如圖,設(shè)拋物線)的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過(guò)橢圓的右焦點(diǎn),與拋物線交于、,如果以線段為直徑作圓,試判斷點(diǎn)與圓的位置關(guān)系,并說(shuō)明理由;
(3)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

(1)(2)即點(diǎn)可在圓內(nèi),圓上或圓外
(3)時(shí),能使的邊長(zhǎng)是連續(xù)的自然數(shù)

解析解:∵的右焦點(diǎn)  ∴橢圓的半焦距,又,
∴橢圓的長(zhǎng)半軸的長(zhǎng),短半軸的長(zhǎng).  橢圓方程為.
(1)當(dāng)時(shí),故橢圓方程為, 3分
(2)依題意設(shè)直線的方程為:,
聯(lián)立 得點(diǎn)的坐標(biāo)為.
代入.
設(shè),由韋達(dá)定理得.
,.


,于是的值可能小于零,等于零,大于零。
即點(diǎn)可在圓內(nèi),圓上或圓外.   ………………………………9分
(3)假設(shè)存在滿足條件的實(shí)數(shù),  由解得:.
,又.
的邊長(zhǎng)分別是、、 . ∴時(shí),能使的邊長(zhǎng)是連續(xù)的自然數(shù)。 14分
考點(diǎn):橢圓的方程,直線與橢圓的位置關(guān)系
點(diǎn)評(píng):解決該試題的關(guān)鍵是熟練的運(yùn)用橢圓的簡(jiǎn)單幾何性質(zhì)來(lái)求解參數(shù)a,b,c的值,得到方程,并利用聯(lián)立方程組的思想求解弦長(zhǎng),拋物線的定義是解決的關(guān)鍵點(diǎn)。屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線與橢圓有相同的焦點(diǎn),點(diǎn)、分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過(guò)點(diǎn)引圓的切線,求此切線的方程;
(3)設(shè)為直線上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線l經(jīng)過(guò)點(diǎn)(0,-2),其傾斜角是60°.
(1)求直線l的方程;
(2)求直線l與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說(shuō)明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某同學(xué)用《幾何畫(huà)板》研究拋物線的性質(zhì):打開(kāi)《幾何畫(huà)板》軟件,繪制某拋物線,在拋物線上任意畫(huà)一個(gè)點(diǎn),度量點(diǎn)的坐標(biāo),如圖.

(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)時(shí),,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線.經(jīng)觀察得:沿著拋物線,無(wú)論怎樣拖動(dòng)點(diǎn),恒有.請(qǐng)你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請(qǐng)寫出相應(yīng)的正確命題;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)拋物線方程為,為直線上任意一點(diǎn),過(guò)引拋物線的切線,切點(diǎn)分別為

(1)求證:三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)點(diǎn)的坐標(biāo)為時(shí),.求此時(shí)拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)設(shè)為拋物線的焦點(diǎn),為拋物線上任意一點(diǎn),已為圓心,為半徑畫(huà)圓,與軸負(fù)半軸交于點(diǎn),試判斷過(guò)的直線與拋物線的位置關(guān)系,并證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案