【題目】某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長度構成的集合,則(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

【答案】D
【解析】解:根據(jù)三視圖可知幾何體是一個三棱柱截去一個三棱錐,
四邊形ABCD是一個邊長為4的正方形,
且AF⊥面ABCD,DE∥AF,DE=4,AF=2,
∴AF⊥AB、DE⊥DC、DE⊥BD,
∴EC= =4 ,EF=FB= =2 ,
BE= = =4 ,
∵A為此幾何體所有棱的長度構成的集合,
∴A={2,4,4 ,4 ,4 },
故選:D.

【考點精析】本題主要考查了由三視圖求面積、體積的相關知識點,需要掌握求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣1:幾何證明選講
如圖,已知四邊形ABCD內接于⊙O,且AB是的⊙O直徑,過點D的⊙O的切線與BA的延長線交于點M.

(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,點是棱、的中點, 是底面上(含邊界)一動點,滿足,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)設集合C={x|m+1<x<2m-1},若BC=C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ex-2+e2-x,若實數(shù)x1x2滿足x1x2,x1+x2<4且(x1-2)(x2-2)<0,則下列結論正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形的棱長為1,點分別是棱的中點.

(Ⅰ)求二面角的余弦值;

(Ⅱ)以為底面作正三棱柱,若此三棱柱另一底面三個頂點也都在該正方體的表面上,求這個正三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大小;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lg(ax-bx)(a>1>b>0).

(Ⅰ)求fx)的定義域;

(Ⅱ)當x∈(1,+∞)時,fx)的值域為(0,+∞),且f(2)=lg2,求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且x=-1處取得極大 2

1)求f(x)的解析式;

2)過點A(1,t) 可作函數(shù)f(x)圖像的三條切線,求實數(shù)t的取值范圍;

3)若對于任意的恒成立,求實數(shù)m取值范圍

查看答案和解析>>

同步練習冊答案