【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點M是左側(cè)面ADD1A1上的一個動點,滿足 =1,則 與 的夾角的最大值為( )
A.30°
B.45°
C.60°
D.75°
【答案】C
【解析】解:以D為坐標(biāo)原點,以DA為x軸,DC為y軸,DD1為z軸,建立空間坐標(biāo)系,如圖所示,
∵M(jìn)是左側(cè)面ADD1A1上的一個動點,
設(shè)點M(x,0,z),其中(0≤x≤1,0≤z≤1),
∴B(1,1,0), =(0,1,1),
∴ =(﹣1,0,1), =(x﹣1,﹣1,z),
∴ =1﹣x+z=1,即x=z,
| |= ,| |= = ,
設(shè) 與 的夾角為θ,
∴cosθ= = ,
設(shè)f(x)=x2﹣x+1,
∴f(x)在[0, ]上單調(diào)遞減,在[ ,1]上單調(diào)遞增,
∴f(0)=1,f( )= ,
∴ ≤f(x)≤1,
∴ ≤cosθ≤ ,
∴θ=60°,
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出一個如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)的圖象經(jīng)過點(2,4),且定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式,判斷f(x)在定義域R上的單調(diào)性,并給予證明;
(2)若關(guān)于x的方程f(x)=m在[﹣1,0)上有解,求f( )的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px上一點 到焦點F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(0,2)與拋物線交于M,N兩點,若OM⊥ON,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線l1從點M(﹣1,3)射到x軸上,在點P(1,0)處被x軸反射,得到光線l2 , 再經(jīng)直線x+y﹣4=0反射,得到光線l3 , 求l2和l3的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直平行六面體ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.
(1)求證:OC1∥平面AB1D1
(2)求證:平面AB1D1⊥平面ACC1A1
(3)求三棱錐A1﹣AB1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“a<﹣2”是“函數(shù)f(x)=ax+3在區(qū)間[﹣1,2]上存在零點x0”的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:方程x2+mx+1=0有兩個不等的負(fù)實根,q:方程4x2+4(m﹣2)x+1=0無實根.若“p或q”為真,“p且q”為假.求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取某班6名學(xué)生,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)依次為:162,168,170,171,179,182,那么此班學(xué)生平均身高大約為cm;樣本數(shù)據(jù)的方差為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com