【題目】中,有正弦定理:定值,這個(gè)定值就是的外接圓的直徑如圖2所示,中,已知,點(diǎn)M在直線EF上從左到右運(yùn)動(dòng)點(diǎn)M不與EF重合,對(duì)于M的每一個(gè)位置,記的外接圓面積與的外接圓面積的比值為,那么  

A. 先變小再變大

B. 僅當(dāng)M為線段EF的中點(diǎn)時(shí),取得最大值

C. 先變大再變小

D. 是一個(gè)定值

【答案】D

【解析】

設(shè)△DEM的外接圓半徑為R1,△DMF的外接圓半徑為R2,由正弦定理得R1,R2,結(jié)合DE=DF,sin∠DME=sin∠DMF,得λ=1,由此能求出結(jié)果.

設(shè)的外接圓半徑為,的外接圓半徑為,

則由題意,,

點(diǎn)M在直線EF上從左到右運(yùn)動(dòng)點(diǎn)M不與E、F重合,

對(duì)于M的每一個(gè)位置,由正弦定理可得:,,

,

可得:,

可得:

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國(guó)的技術(shù)發(fā)展迅速,已位居世界前列.華為公司20198月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場(chǎng)占有率(單位:%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表20198月,2代表20199……,5代表201912月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測(cè)該款手機(jī)市場(chǎng)占有率的變化趨勢(shì),則最早何時(shí)該款手機(jī)市場(chǎng)占有率能超過0.5%(精確到月)(

A.20206B.20207C.20208D.20209

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)E,F,G分別為棱AB,AA1,C1D1的中點(diǎn).下列結(jié)論中,正確結(jié)論的序號(hào)是______

①過E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;

B1D1∥平面EFG

BD1⊥平面ACB1;

④異面直線EFBD1所成角的正切值為;

⑤四面體ACB1D1的體積等于a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)部門隨機(jī)抽測(cè)生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

30,35]

5

0.20

35,40]

8

0.32

40,45]

n1

f1

45,50]

n2

f2

1)確定樣本頻率分布表中n1、n2、f1f2的值;

2)現(xiàn)從日加工零件數(shù)落在(4045]的工人中隨機(jī)選取兩個(gè)人,求這兩個(gè)人中至少有一個(gè)來(lái)自B車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,,,的中點(diǎn),是棱上的點(diǎn),且.

(Ⅰ)求證:平面底面;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為,若雙曲線的一條漸近線與直線平行,則實(shí)數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,其中, 為左、右焦點(diǎn),且離心率,直線與橢圓交于兩不同點(diǎn), .當(dāng)直線過橢圓右焦點(diǎn)且傾斜角為時(shí),原點(diǎn)到直線的距離為.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]

(Ⅰ)求橢圓的方程;

(Ⅱ)若,當(dāng)面積為時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在2013年的自主招生考試成績(jī)中隨機(jī)抽取40名學(xué)生的筆試成績(jī),按成績(jī)共分成五組:第1[75,80),第2[80,85),第3[85,90),第4[90,95),第5[95100],得到的頻率分布直方圖如圖所示,同時(shí)規(guī)定成績(jī)?cè)?/span>85分以上的學(xué)生為優(yōu)秀,成績(jī)小于85分的學(xué)生為良好,且只有成績(jī)?yōu)?/span>優(yōu)秀的學(xué)生才能獲得面試資格.

1)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;

2)根據(jù)樣本頻率分布直方圖估計(jì)樣本的中位數(shù)與平均數(shù);

3)如果用分層抽樣的方法從優(yōu)秀良好的學(xué)生中共選出5人,再?gòu)倪@5人中選2人,那么至少有一人是優(yōu)秀的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案