橢圓的右焦點(diǎn),直線軸的交點(diǎn)為A,在橢圓上存在點(diǎn)P滿足線段AP的垂直平分線過點(diǎn),則橢圓離心率的取值范圍是
A.B.C.D.
D

分析:由題意,橢圓上存在點(diǎn)P,使得線段AP的垂直平分線過點(diǎn)F,即F點(diǎn)到P點(diǎn)與A點(diǎn)的距離相等,根據(jù)|PF|的范圍求得|FA|的范圍,進(jìn)而求得 的范圍即離心率e的范圍.
解答:解:由題意,橢圓上存在點(diǎn)P,使得線段AP的垂直平分線過點(diǎn)F,即F點(diǎn)到P點(diǎn)與A點(diǎn)的距離相等
而|FA|=-c=
|PF|∈[a-c,a+c]
于是 ∈[a-c,a+c]
即ac-c2≤b2≤ac+c2
            ,
又e∈(0,1)
故e∈[,1].
故選D.
點(diǎn)評:本題主要考查橢圓的基本性質(zhì),注意在解不等式過程中將 看作整體,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與橢圓恒有公共點(diǎn),則實(shí)數(shù)的取值范圍為(   )
A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點(diǎn)M到焦點(diǎn)的距離為2,的中點(diǎn),
等于( *** )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l: x-2y+2=0過橢圓的左焦點(diǎn)F和一個(gè)頂點(diǎn)B, 則該橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 (本小題共12分) 雙曲線與橢圓有共同的焦點(diǎn),點(diǎn)
是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求橢圓與雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的離心率為,則它的長半軸長為(   )
A.1B.2C.1或2D.與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(示范高中)如圖,已知橢圓(a>b>0)的離心率,過點(diǎn)的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)已知定點(diǎn),若直線與橢圓交于、兩點(diǎn).問:是否存在的值,使以為直徑的圓過點(diǎn)?請說明理由.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A、B分別為橢圓的左、右頂點(diǎn),橢圓的長軸長為4,且點(diǎn)在該橢圓上。
(I)求橢圓的方程;
(II)設(shè)P為直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線AP與橢圓相交于A的點(diǎn)
M,證明:為銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓上的點(diǎn), 、是橢圓的兩個(gè)焦點(diǎn),則的值為(   )
A. 10B. 8C.6D.4

查看答案和解析>>

同步練習(xí)冊答案