【題目】四棱錐,底面為平行四邊形,側(cè)面底面.已知,,,為線段的中點.
(1)求證:平面;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)見解析;(2)
【解析】分析:(1)連,交于點,連,可得,然后根據(jù)線面平行的判定定理可得平面.(2)由題意得兩兩垂直,建立空間直角坐標(biāo)系,求出平面與平面的法向量后,可得兩法向量夾角的余弦值,由此可得所求銳二面角的余弦值.
詳解:(1) 連,交于點,連.
∵底面為平行四邊形,
∴為的中點.
又在中,為的中點,
∴,
∵面,面,
∴平面.
(2)以的中點為原點,分別以為軸,建立如圖所示的坐標(biāo)系.
則,,,.
∴,,,.
設(shè)平面的一個法向量為,
由,得,
令 得,則.
同理設(shè)平面的一個法向量為,
由 ,得,
令 得,則.
∴.
∴平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ x2 , g(x)= x2+x,m∈R,令F(x)=f(x)+g(x). (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=﹣1,且正實數(shù)x1 , x2滿足F(x1)=﹣F(x2),求證:x1+x2 ﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為4的正方形ABCD的邊上有一點P,沿著折線BCDA由點B(起點)向點A(終點)運動.設(shè)點P運動的路程為x,△APB的面積為y,且y與x之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.
(1)寫出程序框圖中①,②,③處應(yīng)填充的式子.
(2)若輸出的面積y值為6,則路程x的值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·牡丹江一中]某校從參加高一年級期末考試的學(xué)生中抽取60名學(xué)生的成績(均為整數(shù)),其成績的頻率分布直方圖如圖所示,由此估計此次考試成績的中位數(shù),眾數(shù)和平均數(shù)分別是( )
A. 73.3,75,72 B. 73.3,80,73
C. 70,70,76 D. 70,75,75
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A市某機構(gòu)為了調(diào)查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 總計 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計 | 70 | 140 |
(I)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(II)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(。能否在犯錯誤的概率不超過0.001的前提下認(rèn)為性別與支持申辦足球世界杯有關(guān);
(ⅱ)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當(dāng)b=0時,若f(x)與g(x)的圖象有兩個交點A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 . (取e為2.8,取ln2為0.7,取 為1.4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)滿足,,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設(shè),求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“三角保型函數(shù)”,給出下列函數(shù): ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函數(shù)”的是( )
A.①②
B.①③
C.②③④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為R,它的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,則下面結(jié)論正確的是( )
A.在(1,2)上函數(shù)f(x)為增函數(shù)
B.在(3,4)上函數(shù)f(x)為減函數(shù)
C.在(1,3)上函數(shù)f(x)有極大值
D.x=3是函數(shù)f(x)在區(qū)間[1,5]上的極小值點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com