(本小題滿(mǎn)分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線(xiàn)段BC、SB上的一點(diǎn)(端點(diǎn)除外),滿(mǎn)足.(
①求證:對(duì)于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說(shuō)明理由.
(1)∵平面平面∴平面平面(2)①SC∥平面AEF②

試題分析:(Ⅰ)∵平面,
     ……………1分
∵底面為直角梯形,,
    ……………2分

平面     …………3分
平面
∴平面平面 …………4分
(Ⅱ)(。,∴………5分
平面,  平面,………6分
∴對(duì)于任意的,恒有SC∥平面AEF………7分
(ⅱ)存在,使得為直角三角形. ………8分
,即
由(Ⅰ)知,平面,∵平面,∴ ,
,

,
中,,
,,
.    ………10分
②若,即由①知,,
平面,∴平面,
又因平面,這與過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知平面垂直相矛盾,
.  ………12分
③若,即由(。┲,,∴
又∵平面,平面,
 ,平面
這與相矛盾,故
綜上,當(dāng)且僅當(dāng),使得為直角三角形. ……… 14分
點(diǎn)評(píng):第二小題②采用空間向量求解比較簡(jiǎn)單
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分) 如圖,在直三棱柱中,、分別是、的中點(diǎn),點(diǎn)上,。
 
求證:(1)EF∥平面ABC;    
(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面, ,   ,的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)證明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

沿對(duì)角線(xiàn)AC將正方形ABCD折成直二面角后,則AC與BD所成的角等于_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

球內(nèi)接正四棱錐的高為3,體積為6,則這個(gè)球的表面積是(   )
A.16πB.20πC.24πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正三棱錐中,,的中點(diǎn)分別為,且,則正三棱錐外接球的表面積為                    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點(diǎn).

(1)求證:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).

(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)多面體的直觀圖和三視圖如下:(其中分別是中點(diǎn))

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案