圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點.AC,BD交于O點.

(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大。
(1)(2)

試題分析:連QO,則QO∥PA且QO=PA=AB
∵ PA⊥面ABCD
∴ QO⊥面ABCD
面QBD過QO,
∴ 面QBD⊥面ABCD
故二面角Q-BD-C等于90°.
(Ⅱ)解:過O作OH⊥QD,垂足為H,連CH.
∵ 面QBD⊥面BCD,
又∵ CO⊥BD
CO⊥面QBD
CH在面QBD內(nèi)的射影是OH
∵ OH⊥QD
∴ CH⊥QD
于是∠OHC是二面角的平面角.
設(shè)正方形ABCD邊長2,
則OQ=1,OD=,QD=
∵ OH·QD=OQ·OD
∴ OH=
又OC=
在Rt△COH中:tan∠OHC=·
∴ ∠OHC=60°
故二面角B-QD-C等于60°.
點評:本題還可用空間向量的方法求二面角
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,四棱錐中,為正方形, 分別是線段的中點. 求證:
(1)//平面 ; 
(2)平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條不同的直線,兩個不同的平面,則下列命題中正確的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖4,已知四棱錐,底面是正方形,,點的中點,點的中點,連接,.

(1)求證:;
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果空間中若干點在同一平面內(nèi)的射影在一條直線上,那么這些點在空間的位置是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;
(2)若E、F分別為線段BC、SB上的一點(端點除外),滿足.(
①求證:對于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.

(1)求證:平面平面;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,平行四邊形中,沿折起到的位置,使平面平面

(I)求證:;     
(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案