【題目】一個多面體的直觀圖及三視圖如圖所示:(其中M,N分別是AF,BC的中點(diǎn)).
(1)求證:MN∥平面CDEF;
(2)求多面體A﹣CDEF的體積.
【答案】
(1)解:由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE﹣BCF,
且AB=BC=BF=2,DE=CF=2 ,∴∠CBF= .
證明:取BF的中點(diǎn)G,連接MG、NG,
由M,N分別為AF,BC的中點(diǎn)可得,NG∥CF,MG∥EF,
∴平面MNG∥平面CDEF,又MN平面MNG,
∴MN∥平面CDEF
(2)解:取DE的中點(diǎn)H.
∵AD=AE,∴AH⊥DE,
在直三棱柱ADE﹣BCF中,
平面ADE⊥平面CDEF,
平面ADE∩平面CDEF=DE.∴AH⊥平面CDEF.
∴多面體A﹣CDEF是以AH為高,以矩形CDEF為底面的棱錐,在△ADE中,AH= .
S矩形CDEF=DEEF=4 ,
∴棱錐A﹣CDEF的體積為
V= S矩形CDEFAH= ×4 × =
【解析】由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE﹣BCF,且底面是一個直角三角形,由三視圖中所標(biāo)數(shù)據(jù)易計算出三棱柱中各棱長的值.(1)取BF的中點(diǎn)G,連接MG、NG,利用中位線的性質(zhì)結(jié)合線面平行的充要條件,易證明結(jié)論(2)多面體A﹣CDEF的體積是一個四棱錐,由三視圖易求出棱錐的底面面積和高,進(jìn)而得到棱錐的體積.
【考點(diǎn)精析】掌握簡單空間圖形的三視圖和直線與平面平行的判定是解答本題的根本,需要知道畫三視圖的原則:長對齊、高對齊、寬相等;平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=lnx+x2﹣bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)當(dāng)b=﹣1時,設(shè)g(x)=f(x)﹣2x2 , 求證函數(shù)g(x)只有一個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大。
(Ⅱ)若b=2,c=1,D為BC的中點(diǎn),求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:方程有實(shí)根;
(2)在上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,關(guān)于的不等式的解集為空集,求所有滿足條件的實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進(jìn)行測試,測試成績的分組區(qū)間為80,90、90,100、100,110、110,120、120,130,由此得到兩個班測試成績的頻率分布直方圖:
(1)完成下面2×2列聯(lián)表,你能有97.5的把握認(rèn)為“這兩個班在這次測試中成績的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說明理由;
成績小于100分 | 成績不小于100分 | 合計 | |
甲班 | 50 | ||
乙班 |
| 50 | |
合計 | 100 |
(2)根據(jù)所給數(shù)據(jù)可估計在這次測試中,甲班的平均分是105.8,請你估計乙班的平均分,并計算兩班平均分相差幾分?
附:
,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是減函數(shù),在上是增函數(shù)若函數(shù),利用上述性質(zhì),
Ⅰ當(dāng)時,求的單調(diào)遞增區(qū)間只需判定單調(diào)區(qū)間,不需要證明;
Ⅱ設(shè)在區(qū)間上最大值為,求的解析式;
Ⅲ若方程恰有四解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com