(本大題12分)已知關于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:
(1)方程有兩個正根的充要條件;
(2)方程至少有一正根的充要條件.
解: 方程有兩個實根的充要條件是
即
即:a≥10或a≤2且a≠1.…………………………………2分
(1)設此方程的兩個實數(shù)根為x1.x2,則方程有兩個正根.
解得:1<a≤2或a≥10.
∴1<a≤2或a≥10是方程有兩個正根的充要條件.…………………………………7分
(2)①由(1)可知:當a≥10或1<a≤2時,方程有兩個正根;
②方程有一正根一負根的充要條件是
即a<1.
③當a=1時,方程可化為3x-4=0,有一正根x=,
綜上①②③可知:方程(1-a)x2+(a+2)x-4=0
至少有一正根的充要條件是a≤2或a≥10.………………………………12分
【解析】略
科目:高中數(shù)學 來源: 題型:
(本大題12分)已知函數(shù),x∈(1,+∞]
(1)當a=2時,求函數(shù)f(x)的最小值;
。2)若對任意x∈(1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年黑龍江省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本大題12分)
已知函數(shù)函數(shù)的圖象與的圖象關于直線對稱,.
(Ⅰ)當時,若對均有成立,求實數(shù)的取值范圍;
(Ⅱ)設的圖象與的圖象和的圖象均相切,切點分別為和,其中.
(1)求證:;
(2)若當時,關于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年黑龍江省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題
(本大題12分)
已知為坐標原點,點,且.
(Ⅰ)若,求的值;
(Ⅱ)若,求與的夾角.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省六校高三上學期11月聯(lián)考理科數(shù)學 題型:解答題
(本大題12分)已知二次函數(shù).
(1)判斷命題:“對于任意的R(R為實數(shù)集),方程必有實數(shù)根”的真假,并寫出判斷過程
(2),若在區(qū)間及內各有一個零點.求實數(shù)a的范圍
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com