在數(shù)列中, (是常數(shù),),且,,成公比不為的等比數(shù)列.
(1)求的值;
(2)求的通項公式.
(1)   (2) 
 (1),,,
因為,,成等比數(shù)列,…………2分
所以,
解得.…………5分
時,,不符合題意舍去,故.…………6分
(2)當時,由于
,
,


所以.…………10分
,,故
時,上式也成立,
所以.…………12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)設(shè)集合W由滿足下列兩個條件的數(shù)列構(gòu)成:

②存在實數(shù)M,使(n為正整數(shù))
(I)在只有5項的有限數(shù)列
;試判斷數(shù)列是否為集合W的元素;
(II)設(shè)是各項為正的等比數(shù)列,是其前n項和,證明數(shù)列;并寫出M的取值范圍;
(III)設(shè)數(shù)列且對滿足條件的M的最小值M0,都有.
求證:數(shù)列單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義在R上的單調(diào)函數(shù),存在實數(shù),使得對于任意實數(shù),總有恒成立。
(Ⅰ)求的值;
(Ⅱ)若,且對任意正整數(shù),有, ,求數(shù)列{an}的通項公式;
(Ⅲ)若數(shù)列{bn}滿足,將數(shù)列{bn}的項重新組合成新數(shù)列,具體法則如下:……,求證:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列的前項和為,且對任意的,都有,
(1)求的值;
(2)求數(shù)列的通項公式
(3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是數(shù)列的前n項和,滿足關(guān)系式
n≥2,n為正整數(shù)).
(1)令,證明:數(shù)列是等差數(shù)列;
(2)求數(shù)列的通項公式;
(3)對于數(shù)列,若存在常數(shù)M>0,對任意的,恒有
M成立,稱數(shù)列為“差絕對和有界數(shù)列”,
證明:數(shù)列為“差絕對和有界數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

方程有實根,且2、、為等差數(shù)列的前三項.求該等差數(shù)列公差的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從盛滿2升純酒精的容器里倒出1升,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,要使酒精濃度低于10%,則至少應(yīng)倒(     )
A.5次B.3次C.4次D.6次

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前n項和為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某公司決定給員工增加工資,提出了兩個方案,讓每位員工自由選擇其中一種.甲方案是:公司在每年年末給每位員工增資1000元;乙方案是每半年末給每位員工增資300元.某員工分別依兩種方案計算增資總額后得到下表:
工作年限
方案甲
方案乙
最終選擇
1
1000
600
方案甲
2
2000
1200
方案乙
≥3
 
 
方案甲
(說明:①方案的選擇應(yīng)以讓自己獲得更多增資為準. ②假定員工工作年限均為整數(shù).)
(1)他這樣計算增資總額,結(jié)果對嗎?如果讓你選擇,你會怎樣選擇增資方案?說明你的理由;
(2)若保持方案甲不變,而方案乙中每半年末的增資數(shù)改為a元,問:a為何值時,方案乙總比方案甲多增資?

查看答案和解析>>

同步練習冊答案