【題目】已知函數(shù)(,且為自然對(duì)數(shù)的底數(shù))
(1)判斷函數(shù)的單調(diào)性并證明;
(2)判斷函數(shù)的奇偶性并證明;
(3)是否存在實(shí)數(shù),使不等式對(duì)一切都成立?若存在,求出的范圍,若不存在說明理由.
【答案】(1)增函數(shù),證明見解析(2)奇函數(shù),證明見解析(3)存在,
【解析】
(1)利用單調(diào)性的定義證明單調(diào)性;
(2)利用奇偶性的定義證明奇偶性;
(3)根據(jù)(1)(2)的結(jié)論脫去“f”,分離參數(shù),轉(zhuǎn)化為二次函數(shù)問題,求實(shí)數(shù)t的取值范圍.
(1)任取x1,x2∈(﹣∞,+∞),且x1<x2,
則f(x2)﹣f(x1),
又y=ex在R上為增函數(shù)且ex>0,
∴,∴,
∴f(x2)>f(x1),
∴f(x)在(﹣∞,+∞)上是增函數(shù).
(2)∵函數(shù)f(x)=ex﹣e﹣x,x∈R,定義域關(guān)于原點(diǎn)對(duì)稱,
又f(﹣x)=e﹣x﹣ex=﹣(ex﹣e﹣x)=﹣f(x),
∴f(x)為奇函數(shù).
(3)由(1)(2)知f(x)在R上為奇函數(shù)且單調(diào)遞增,由
可得:,
∴,
即:對(duì)一切都成立,
又
解得:.
綜上存在實(shí)數(shù),t的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若存在使得,求實(shí)數(shù)的取值范圍;
(Ⅲ)若當(dāng)時(shí)恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程的實(shí)根個(gè)數(shù)記.(1)若,則=____________;(2)若,存在使得成立,則的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x),對(duì)于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,當(dāng)x>1時(shí),f(x)<0.
(1)求證:1是函數(shù)f(x)的零點(diǎn);
(2)求證:f(x)是(0,+∞)上的減函數(shù);
(3)當(dāng)f(2)=時(shí),解不等式f(ax+4)>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域是R上的奇函數(shù).
(1)求a;
(2)判斷在R上的單調(diào)性,并用定義法證明;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x方程有零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某食品廠生產(chǎn)的面包中抽取個(gè),測(cè)量這些面包的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | |||||
頻數(shù) |
(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這種面包質(zhì)量指標(biāo)值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定?”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)在如圖所示給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)遞增區(qū)間;
(3)由圖象指出當(dāng)x取什么值時(shí)f(x)有最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線上一點(diǎn)的極坐標(biāo)為,且過點(diǎn),求的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),與的交點(diǎn)為,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com