(本題滿分14分)如圖:多面體中,三角形是邊長為4的正三角形,,平面,.
(1)若是的中點,求證:;
(2)求平面與平面所成的角的余弦值.
18.(本小題滿分14分)
解:(1)設(shè)線段的中點為,由平面得:,
又,所以是正方形,點是線段的中點,
所以,所以,……………………………………………………2分
由平面得:,…………………………………………………3分
又,所以,且,
所以:,所以,………………………………………………5分
所以:平面,所以;……………………………………6分
(2)如圖以為原點,所在方向分別為軸的正方向建立空間直角坐標系,則, --------8分
設(shè)平面的法向量為,則有
,
令,則 …………………………10分
設(shè)平面的法向量為,則有
,令,則…………………………………12分
所以:,
所以:平面與平面所成的角的余弦值是!14分
【解析】略
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個矩形草坪,另外△AEF內(nèi)部有一文物保護區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點,F(xiàn)是AB中點,
(1)求證:;
(2)當E是棱CC1中點時,求證:CF//平面AEB1;
(3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點,求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學 來源:2011年福建省高二上學期期末考試數(shù)學理卷 題型:解答題
(本題滿分14分)如圖,正方形、的邊長都是1,平面平面,點在上移動,點在上移動,若()
(I)求的長;
(II)為何值時,的長最。
(III)當的長最小時,求面與面所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源:杭州市2010年第二次高考科目教學質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com