【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素數(shù)猜想的一個弱化形式.孿生素數(shù)猜想是希爾伯特在二十世紀初提出的23個數(shù)學(xué)問題之一.可以這樣描述:存在無窮多個素數(shù),使得是素數(shù),稱素數(shù)對為孿生素數(shù).在不超過15的素數(shù)中,隨機選取兩個不同的數(shù),其中能夠組成孿生素數(shù)的概率是( ).

A.B.C.D.

【答案】C

【解析】

先求得不超過15的素數(shù)的個數(shù),進而得出其中能夠組成孿生素數(shù)的組數(shù),結(jié)合排列組合和古典概型的概率計算公式,即可求解.

由題意,存在無窮多個素數(shù),使得是素數(shù),稱素數(shù)對為孿生素數(shù).

其中不超過15的素數(shù)有23,5,7,11,13,

可得能夠組成孿生素數(shù)的有,,,

在不超過15的素數(shù)中,隨機選取兩個不同的數(shù),共有種,

其中能夠組成孿生素數(shù)包含的基本事件個數(shù),

所以其中能夠組成孿生素數(shù)的概率是

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線C1:的準線1x軸交于橢圓C2的右焦點F2,F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,MC1上一動點,且在PQ之間移動.

1)當取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中國決勝全面建成小康社會的關(guān)鍵之年,如何更好地保障和改善民生,如何切實增強政策“獲得感”,成為2019年全國兩會的重要關(guān)切.某地區(qū)為改善民生調(diào)研了甲、乙、丙、丁、戊5個民生項目,得到如下信息:

①若該地區(qū)引進甲項目,就必須引進與之配套的乙項目;

②丁、戊兩個項目與民生密切相關(guān),這兩個項目至少要引進一個;

③乙、丙兩個項目之間有沖突,兩個項目只能引進一個;

④丙、丁兩個項目關(guān)聯(lián)度較高,要么同時引進,要么都不引進;

⑤若引進項目戊,甲、丁兩個項目也必須引進.

則該地區(qū)應(yīng)引進的項目為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E

(1)求證:四邊形ACC1A1為矩形;

(2)求二面角E-B1C-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線方程為 (p0)M為直線上任意一點,過M引拋物線的切線,切點分別為A,B.

1)求直線AB軸的交點坐標;

2)若E為拋物線弧AB上的動點,拋物線在E點處的切線與三角形MAB的邊MA,MB分別交于點,,記,問是否為定值?若是求出該定值;若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某傳染病疫情爆發(fā)期間,當?shù)卣e極整合醫(yī)療資源,建立艙醫(yī)院對所有密切接觸者進行14天的隔離觀察治療.治療期滿后若檢測指標仍未達到合格標準,則轉(zhuǎn)入指定?漆t(yī)院做進一步的治療.艙醫(yī)院對所有人員在入口出口時都進行了醫(yī)學(xué)指標檢測,若入口檢測指標在35以下者則不需進入艙醫(yī)院而是直接進入指定?漆t(yī)院進行治療.以下是20名進入艙醫(yī)院的密切接觸者的入口出口醫(yī)學(xué)檢測指標:

入口

50

35

35

40

55

90

80

60

60

60

65

35

60

90

35

40

55

50

65

50

出口

70

50

60

50

75

70

85

70

80

70

55

50

75

90

60

60

65

70

75

70

(Ⅰ)建立關(guān)于的回歸方程;(回歸方程的系數(shù)精確到0.1

(Ⅱ)如果60艙醫(yī)院出口最低合格指標,那么,入口指標低于多少時,將來這些密切接觸者將不能進入艙醫(yī)院而是直接進入指定?漆t(yī)院接受治療.(檢測指標為整數(shù))

附注:參考數(shù)據(jù):,

參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春季氣溫逐漸攀升,病菌滋生傳播快,為了確保安全開學(xué),學(xué)校按30名學(xué)生一批,組織學(xué)生進行某種傳染病毒的篩查,學(xué)生先到醫(yī)務(wù)室進行血檢,檢呈陽性者需到防疫部門]做進一步檢測.學(xué)校綜合考慮了組織管理、醫(yī)學(xué)檢驗?zāi)芰Φ榷嗳f面的因素,根據(jù)經(jīng)驗,采用分組檢測法可有效減少工作量,具體操作如下:將待檢學(xué)生隨機等分成若干組,先將每組的血樣混在一起化驗,若結(jié)果呈陰性,則可斷定本組血樣合格,不必再做進一步的檢測;若結(jié)果呈陽性,則本組中的每名學(xué)生再逐個進行檢測.現(xiàn)有兩個分組方案:方案一:將30人分成5組,每組6人;方案二:將30人分成6組,每組5人.已知隨機抽一人血檢呈陽性的概率為05%,且每個人血檢是否呈陽性相互獨立.

(Ⅰ)請幫學(xué)校計算一下哪一個分組方案的工作量較少?

(Ⅱ)已知該傳染疾病的患病率為045%,且患該傳染疾病者血檢呈陽性的概率為999%,若檢測中有一人血檢呈陽性,求其確實患該傳染疾病的概率.(參考數(shù)據(jù):(,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省級示范高中高三年級對各科考試的評價指標中,有“難度系數(shù)“和“區(qū)分度“兩個指標中,難度系數(shù),區(qū)分度.

1)某次數(shù)學(xué)考試(滿分為150分),隨機從實驗班和普通班各抽取三人,實驗班三人的成績分別為147,142137;普通班三人的成績分別為97,102113.通過樣本估計本次考試的區(qū)分度(精確0.01).

2)如表表格是該校高三年級6次數(shù)學(xué)考試的統(tǒng)計數(shù)據(jù):

難度系數(shù)x

0.64

0.71

0.74

0.76

0.77

0.82

區(qū)分度y

0.18

0.23

0.24

0.24

0.22

0.15

①計算相關(guān)系數(shù)r,|r|<0.75時,認為相關(guān)性弱;|r|≥0.75時,認為相關(guān)性強.通過計算說明,能否利用線性回歸模型描述yx的關(guān)系(精確到0.01).

ti=|xi0.74|(i=1,2,…,6),求出y關(guān)于t的線性回歸方程,并預(yù)測x=0.75y的值(精確到0.01).

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù)r,回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市組織高三全體學(xué)生參加計算機操作比賽,等級分為110分,隨機調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:

B校樣本數(shù)據(jù)統(tǒng)計表:

成績(分)

1

2

3

4

5

6

7

8

9

10

人數(shù)(個)

0

0

0

9

12

21

9

6

3

0

1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.

2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.

查看答案和解析>>

同步練習(xí)冊答案