附加題:
已知f(x)=x-,
(1)判斷函數(shù)在區(qū)間(-∞,0)上的單調性,并用定義證明;
(2)畫出該函數(shù)在定義域上的圖象.(圖象體現(xiàn)出函數(shù)性質即可)

【答案】分析:(1)設x1<x2<0,則f(x1)-f(x2)==,結合已知可判斷f(x1)>f(x2),從而可證
(2)f(x)=x-的定義域為{x|x≠0},為奇函數(shù),f(1)=f(-1)=0,f(x)在區(qū)間(-∞,0)上的單調遞增,f(x)在區(qū)間(0,+∞)上的單調遞增,結合函數(shù)的性質可畫出函數(shù)的圖象
解答:解:(1)函數(shù)f(x)在(-∞,0)上遞增.…(1分)
證明:設x1<x2<0,
則f(x1)-f(x2)==(x1-x2)+(
=
=
∵x1<x2<0,
∴x1-x2<0,x1x2>0,1+x1x2>0
>0
即f(x1)>f(x2
∴函數(shù)f(x)在區(qū)間(-∞,0)上的單調遞增…(8分)
(2)∵f(x)=x-的定義域為{x|x≠0},且為奇函數(shù),f(1)=f(-1)=0
f(x)在區(qū)間(-∞,0)上的單調遞增,f(x)在區(qū)間(0,+∞)上的單調遞增…(10分)
圖象如圖所示
點評:本題主要考查了函數(shù)的單調性的定義在證明函數(shù)的單調性中的應用,畫出函數(shù)的圖象的關鍵是熟練應用函數(shù)的性質
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(附加題)已知f(x)是定義在R上單調函數(shù),對任意實數(shù)m,n有:f(m+n)=f(m)•f(n);且x>0時,0<f(x)<1.
(1)證明:f(0)=1;
(2)證明:當x<0時,f(x)>1;
(3)當f(4)=
1
16
時,求使f(x2-1)•f(a-2x)≤
1
4
對任意實數(shù)x恒成立的參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

附加題:
已知f(x)=x-
1x
,
(1)判斷函數(shù)在區(qū)間(-∞,0)上的單調性,并用定義證明;
(2)畫出該函數(shù)在定義域上的圖象.(圖象體現(xiàn)出函數(shù)性質即可)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(附加題)已知f(x)是定義在R上單調函數(shù),對任意實數(shù)m,n有:f(m+n)=f(m)•f(n);且x>0時,0<f(x)<1.
(1)證明:f(0)=1;
(2)證明:當x<0時,f(x)>1;
(3)當f(4)=
1
16
時,求使f(x2-1)•f(a-2x)≤
1
4
對任意實數(shù)x恒成立的參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省廣州市荔灣區(qū)新會一中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

(附加題)已知f(x)是定義在R上單調函數(shù),對任意實數(shù)m,n有:f(m+n)=f(m)•f(n);且x>0時,0<f(x)<1.
(1)證明:f(0)=1;
(2)證明:當x<0時,f(x)>1;
(3)當時,求使對任意實數(shù)x恒成立的參數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案