【題目】設(shè)函數(shù)

(1)當, 恒成立,求實數(shù)的取值范圍.

(2)設(shè)上有兩個極值點.

(A)求實數(shù)的取值范圍;

(B)求證: .

【答案】(1);(2)(A);(B)證明見解析;

【解析】試題分析:(1)構(gòu)造函數(shù),求導(dǎo)數(shù)分, , 出函數(shù)的最值即可,
(2)函數(shù) 有兩個極值點、,即導(dǎo)函數(shù)g′(x)有兩個不同的實數(shù)根,a進行分類討論,不妨設(shè),則,構(gòu)造函數(shù), .,利用函數(shù)的單調(diào)性證明不等式.

試題解析:

解:(1)∵,且,

.

,則.

①當時, , 上為單調(diào)遞增函數(shù),

時, ,不合題意.

②當時, 時, , 上為單調(diào)遞增函數(shù),

, ,不合題意.

③當時, , , 上為單調(diào)遞減函數(shù).

時, ,不合題意.

④當時, , , 上為單調(diào)遞增函數(shù).

, , 上為單調(diào)遞減函數(shù).

,符合題意.

綜上, .

(2), .

.

,則

由已知上有兩個不等的實根.

(A)①當時, , 上為單調(diào)遞增函數(shù),不合題意.

②當時, 上為單調(diào)遞減函數(shù),不合題意.

③當時, , ,

所以, , , ,解得.

(B)由已知,

.

不妨設(shè),則,則 .

, .

,∴上為單調(diào)遞增函數(shù),

,

,

,

由(A),

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校甲、乙、丙、丁四個專業(yè)分別有150、150、400、300名學(xué)生,為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個專業(yè)共抽取40名學(xué)生進行調(diào)查,應(yīng)在丙專業(yè)抽取的學(xué)生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代太極圖是一種優(yōu)美的對稱圖.如果一個函數(shù)的圖像能夠?qū)A的面積和周長分成兩個相等的部分,我們稱這樣的函數(shù)為圓的“太極函數(shù)”.下列命題中錯誤命題的個數(shù)是( )

對于任意一個圓其對應(yīng)的太極函數(shù)不唯一;

如果一個函數(shù)是兩個圓的太極函數(shù),那么這兩個圓為同心圓;

的一個太極函數(shù)為

圓的太極函數(shù)均是中心對稱圖形;

奇函數(shù)都是太極函數(shù);

偶函數(shù)不可能是太極函數(shù).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)設(shè)函數(shù), 為自然對數(shù)的底數(shù).若存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=lg(2sinx﹣1)的定義域為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利潤y/元與該周每天銷售這種服裝件數(shù)x/件之間的數(shù)據(jù)如表:

X

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求 ;
(2)畫出散點圖;
(3)判斷純利潤y與每天銷售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的物理知識競賽中,將三個年級參賽學(xué)生的成績在進行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.

(1)求成績在50~70分的頻率是多少;
(2)求這三個年級參賽學(xué)生的總?cè)藬?shù)是多少;
(3)求成績在80~100分的學(xué)生人數(shù)是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線從點(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

同步練習(xí)冊答案