【題目】如圖,在直角梯形中, // , ⊥, ⊥, 點是 邊的中點, 將△沿折起,使平面⊥平面,連接, , , 得到如圖所示的幾何體.
(Ⅰ)求證: ⊥平面;
(Ⅱ)若, ,求二面角的大小.
【答案】(I)詳見解析;(II).
【解析】試題分析:(Ⅰ) 由平面⊥平面,得到⊥平面,進(jìn)而證得⊥,
利用線面垂直的判定定理,即可證得結(jié)論;
(Ⅱ)建立空間直角坐標(biāo)系,由(Ⅰ)知平面的法向量,求得平面的法向量,利用空間向量的夾角公式,即可求解二面角的大小.
試題解析: (Ⅰ) 因為平面⊥平面,平面平面,
又⊥,所以⊥平面
因為平面,所以⊥
又⊥,∩,所以⊥平面.
(Ⅱ) ,.
依題意△~△,
所以,即.
如圖所示,建立空間直角坐標(biāo)系,則,,,
,, ,.
由(Ⅰ)知平面的法向量.
設(shè)平面的法向量
由得
令,得,所以.
所以.
由圖可知二面角的平面角為銳角,
所以二面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點的直線與中心在原點,焦點在軸上且離心率為的橢圓相交于、兩點,直線過線段的中點,同時橢圓上存在一點與右焦點關(guān)于直線對稱.
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有兩個相異零點, ,求證: .(其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在一次第二課堂活動中,特意設(shè)置了過關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒過者沒獎勵,過 關(guān)者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關(guān)游戲中過關(guān)數(shù)的條形圖,以此頻率估計概率.
(Ⅰ)估計小明在1次游戲中所得獎品數(shù)的期望值;
(Ⅱ)估計小明在3 次游戲中至少過兩關(guān)的平均次數(shù);
(Ⅲ)估計小明在3 次游戲中所得獎品超過30件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點為, , 為橢圓上一點,且到兩個焦點的距離之和為6.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若已知直線,當(dāng)為何值時,直線與橢圓有公共點?
(3)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列函數(shù):①f(x)= ②f(x)=﹣|x|③f(x)=﹣2x﹣1 ④f(x)=(x﹣1)2 , 滿足“對任意x1 , x2∈(0,+∞),當(dāng)x1<x2時,都有f(x1)>f(x2)”的條件是( )
A.①②③
B.②③④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y= 的定義域是{x|x>2},則它的值域是{y|y≤ };
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號是 . (注:把你認(rèn)為不正確的命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為, .
(1)求數(shù)列的通項公式;
(2)令,設(shè)數(shù)列的前項和為,求;
(3)令,若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com