【題目】選修4-4:坐標系與參數(shù)方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為.
(Ⅰ)寫出曲線和直線的直角坐標方程;
(Ⅱ)設(shè)直線過點與曲線交于不同兩點,的中點為,與的交點為,求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知可以用一系列半徑為且彼此不重疊的圓盤覆蓋平面上的所有格點(在平面直角坐標系中,橫、縱坐標都是整數(shù)的點為格點),則______4 (填“大于~小于”或“等于”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(a為常數(shù),且)在處取得極值.
(1)求實數(shù)a的值,并求的單調(diào)區(qū)間;
(2)關(guān)于x的方程在上恰有1個實數(shù)根,求實數(shù)b的取值范圍;
(3)求證:當時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系并取相同的單位長度,曲線的極坐標方程為.
(1)把曲線的方程化為普通方程,的方程化為直角坐標方程
(2)若曲線,相交于兩點,的中點為,過點作曲線的垂線交曲線于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某一段海底光纜出現(xiàn)故障,需派人潛到海底進行維修,現(xiàn)在一共有甲、乙、丙三個人可以潛水維修,由于潛水時間有限,每次只能派出一個人,且每個人只派一次,如果前一個人在一定時間內(nèi)能修好則維修結(jié)束,不能修好則換下一個人.已知甲、乙、丙在一定時間內(nèi)能修好光纜的概率分別為,且各人能否修好相互獨立.
(1)若按照丙、乙、甲的順序派出維修,設(shè)所需派出人員的數(shù)目為X,求X的分布列和數(shù)學(xué)期望;
(2)假設(shè)三人被派出的不同順序是等可能出現(xiàn)的,現(xiàn)已知丙在乙的下一個被派出,求光纜被丙修好的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.
安全意識強 | 安全意識不強 | 合計 | |
男性 | |||
女性 | |||
合計 |
(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;
(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);
(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.
附:,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)若回歸直線方程,其中;試預(yù)測當單價為10元時的銷量;
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com