【題目】在平面坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程,的方程化為直角坐標(biāo)方程

(2)若曲線,相交于兩點,的中點為,過點作曲線的垂線交曲線兩點,求.

【答案】(1);(2)

【解析】

利用代入法消去參數(shù)可得到曲線的普通方程,利用可得的直角坐標(biāo)方程;利用的結(jié)論,利用一元二次方程根和系數(shù)關(guān)系求得線段AB的中垂線參數(shù)方程為為參數(shù),代入,利用直線參數(shù)方程的幾何意義可得結(jié)果.

曲線的參數(shù)方程為其中t為參數(shù),轉(zhuǎn)換為直角坐標(biāo)方程為:

曲線的極坐標(biāo)方程為.轉(zhuǎn)換為直角坐標(biāo)方程為:

設(shè),,且中點,聯(lián)立方程為:,

整理得:所以:,由于:

所以線段AB的中垂線參數(shù)方程為為參數(shù),代入,

得到:,故:,,

所以:,

故:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,則定義直線為曲線,的“分界直線”.已知,則的“分界直線”為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿元的顧客,將獲得一次摸獎機會,規(guī)則如下:一個袋子裝有只形狀和大小均相同的玻璃球,其中兩只是紅色,三只是綠色,顧客從袋子中一次摸出兩只球,若兩只球都是紅色,則獎勵元;共兩只球都是綠色,則獎勵元;若兩只球顏色不同,則不獎勵.

(1)求一名顧客在一次摸獎活動中獲得元的概率;

(2)記為兩名顧客參與該摸獎活動獲得的獎勵總數(shù)額,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(為參數(shù)).

若曲線上存在M,N兩點關(guān)于直線l對稱,求實數(shù)m的值;

若直線與曲線相交于PQ兩點,且,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,四邊形是長方形,,,,連接

證明:平面平面;

,是線段上的一點,且,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個班中各隨機抽取名學(xué)生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分?jǐn)?shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取人進行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

在平面直角坐標(biāo)系中,以原點為極點,以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線過點與曲線交于不同兩點,的中點為,的交點為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近兩年來,以《中國詩詞大會》為代表的中國文化類電視節(jié)目帶動了一股中國文化熱潮.某臺舉辦闖關(guān)答題比賽,共分兩輪,每輪共有4類題型,選手從前往后逐類回答,若中途回答錯誤,立馬淘汰,若全部回答正確,就能獲得一枚復(fù)活幣并進行下一輪答題,兩輪都通過就可以獲得最終獎金.選手在第一輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會在下一輪答題中自動使用,即下一輪重新進行闖關(guān)答題時,在某一類題型中回答錯誤,自動復(fù)活一次,視為答對該類題型.若某選手每輪的4類題型的通過率均分別為、、、,則該選手進入第二輪答題的概率為_________;該選手最終獲得獎金的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點.

1)求證:平面PAD

2)若,求直線EF與平面PAB所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案