【題目】若是兩條不同的直線, 是三個不同的平面,下面說法正確的是( )
A. 若,則 B. 若,則
C. 若,則 D. 若,則
【答案】B
【解析】若,則與平行,相交或,故不正確;若,則, ,根據(jù)線面平行的性質(zhì)在內(nèi)至少存在一條直線與平行,根據(jù)線面垂直的判定:如果兩條平行線中的一條垂直這個平面,那么另一條也垂直于該平面, ,可得,故正確;若 , ,則或與相交,故不正確;若,則與相交或平行,故不正確,故選B.
【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷并證明)在)上的單調(diào)性;
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是直徑, 所在的平面, 是圓周上不同于的動點.
(1)證明:平面平面;
(2)若,且當二面角的正切值為時,求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在[﹣2,2]上的函數(shù)f(x)滿足f(x)+f(﹣x)=0,且 ,若f(1﹣t)+f(1﹣t2)<0,則實數(shù)t的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是上、下底邊長分別為2和6,高為的等腰梯形,將它沿對稱軸折疊,使二面角為直二面角.
(1)證明: ;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在實數(shù)集R中定義一種運算“*”,對任意給定的a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì): ⑴對任意a,b∈R,a*b=b*a;(2)對任意a∈R,a*0=a;(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.關于函數(shù)f(x)=(3x)* 的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣ ),( ,+∞).
其中所有正確說法的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長為2的正方形, 分別為線段, 的中點.
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù) 在某一周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(Ⅰ)請將上表數(shù)據(jù)補充完整,函數(shù)的解析式(直接寫出結果即可)
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;/span>
(Ⅲ)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com