【題目】設函數(shù)f′(x)是偶函數(shù)f(x)(x∈(﹣∞,0)∪(0,+∞)的導函數(shù),f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)
【答案】C
【解析】解:令g(x)= ,
則g′(x)= ,
∵xf′(x)﹣f(x)<0,
∴g′(x)<0,
∴g(x)在(0,+∞)上為減函數(shù),
又∵g(﹣x)=﹣g(x),
∴函數(shù)g(x)為定義域上的奇函數(shù),g(x)在(﹣∞,0)上為減函數(shù).
又∵g(﹣1)=0,
∴g(1)=0,
∴不等式f(x)>0xg(x)>0,
∴x>0,g(x)>0或x<0,g(x)<0,
∴0<x<1或﹣1<x<0,
∴f(x)>0成立的x的取值范圍是(﹣1,0)∪(0,1),
故選:C.
由已知當x>0時總有xf′(x)﹣f(x)<0成立,可判斷函數(shù)g(x)= 在(0,+∞)上為減函數(shù),由已知f(x)是定義在R上的奇函數(shù),可證明g(x)在(﹣∞,0)上為減函數(shù),不等式f(x)>0等價于xg(x)>0,分類討論即可得到答案.
科目:高中數(shù)學 來源: 題型:
【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷卡指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設a,b∈R.若直線l:ax+y-7=0在矩陣A= 對應的變換作用下,得到的直線為l′:9x+y-91=0.求實數(shù)a,b的值.
C.選修4—4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點,求線段AB的長.
D.選修4—5:不等式選講
設a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1(x≥0)的圖象經(jīng)過點(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x﹣ax﹣2+8,x∈[﹣2,1]的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:分子為1且分母為正整數(shù)的分數(shù)叫做單位分數(shù),我們可以把1拆分成多個不同的單位分數(shù)之和.例如:1= + + ,1= + + + ,1= + + + + ,…,依此拆分法可得1= + + + + + + + + + + + + + ,其中m,n∈N* , 則m﹣n=( )
A.﹣2
B.﹣4
C.﹣6
D.﹣8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知 a>0 且 a≠1,若函數(shù)f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[2.2]=2,[﹣3.5]=﹣4,設數(shù)列{an}的通項公式為an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
(1)求a1a2a3的值;
(2)是否存在實數(shù)a,使得an=(n﹣2)2n+a(n∈N*),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中放有大小和形狀相同的四個小球,它們的標號分別為1、2、3、4,現(xiàn)從袋中不放回地隨機抽取兩個小球,記第一次取出的小球的標號為a,第二次取出的小球的標號為b,記事件A為“a+b≥6“.
(1)列舉出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在區(qū)間[0,2]內任取兩個實數(shù)x,y,求事件“x2+y2≥12P(A)“的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com