【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=4,AA1=2,則直線BC1與平面BB1D1D所成角的正弦值為(
A.
B.
C.
D.

【答案】D
【解析】解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系, 則B(2,2,0),C1(0,2,1),D(0,0,0),D1(0,0,1),
=(﹣2,0,1), =(2,2,0), =(0,0,1),
設平面BB1D1D的法向量 =(x,y,z),
, ,取x=1,得 =(1,﹣1,0),
設BC1與平面BB1D1D所成的角為θ,
則sinθ= = =
∴BC1與平面BB1D1D所成的角的正弦值為:
故選:D.

【考點精析】通過靈活運用空間角的異面直線所成的角,掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數(shù)方程他為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常數(shù),當s+t取最小值 時,m、n對應的點(m,n)是雙曲線 一條弦的中點,則此弦所在的直線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米. (Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在 中, 分別是角 的對邊,且 .
(Ⅰ)求 的大;
(Ⅱ)若 ,求 的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ,點 ,求:
(1)過點 的圓的切線方程;
(2) 點是坐標原點,連接 ,求 的面積 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應填入的條件為(
A.k≤3
B.k≤4
C.k≤5
D.k≤6

查看答案和解析>>

同步練習冊答案