【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

【答案】
(1)解:如圖,以DA,DC,DD1為x,y,z軸,建立空間直角坐標(biāo)系,

則A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)

, , ,

,

,

,

∴A1C⊥平面BED


(2)解:∵ ,

設(shè)平面A1DE的法向量為 ,

得﹣2x+2y﹣3z=0,﹣2x﹣4z=0,

同理得平面BDE的法向量為 ,

∴cos< >= = =﹣

所以二面角A1﹣DE﹣B的余弦值為


【解析】(1)以DA,DC,DD1為x,y,z軸,建立空間直角坐標(biāo)系,則 , ,由向量法能證明A1C⊥平面BED.(2)由 , ,得到平面A1DE的法向量 ,同理得平面BDE的法向量為 ,由向量法能求出二面角A1﹣DE﹣B的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場種植黃瓜,根據(jù)多年的市場行情得知,從春節(jié)起的300天內(nèi),黃瓜市場售價與上市時間的關(guān)系用圖1所示的一條折線表示,黃瓜的種植成本與上市時間的關(guān)系用圖2所示的拋物線表示.(注:市場售價和種植成本的單位:元/kg,時間單位:天)
(1)寫出圖1表示的市場售價與時間的函數(shù)關(guān)系式P=f(t);寫出圖2表示的種植成本與時間的函數(shù)關(guān)系式Q=g(x);

(2)認(rèn)定市場售價減去種植成本為純收益,問從春節(jié)開始的第幾天上市的黃瓜純收益最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是 (t為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2+12ρcosθ+11=0. (Ⅰ)說明C是哪種曲線?并將C的方程化為直角坐標(biāo)方程;
(Ⅱ)直線l與C交于A,B兩點,|AB|= ,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)(x>0)滿足:f(xy)=f(x)+f(y),當(dāng)x<1時f(x)>0,且f( )=1;
(1)證明:y=f(x)是(x>0)上的減函數(shù);
(2)解不等式f(x﹣3)>f( )﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=4,AA1=2,則直線BC1與平面BB1D1D所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=4,點E、F分別為AB和PD的中點.
(1)求證:直線AF∥平面PEC;
(2)求平面PAD與平面PEC所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x3+ax2+bx﹣a2﹣7a在x=1處取得極大值10,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= (a∈R)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一個零點,求實數(shù)b取值范圍.

查看答案和解析>>

同步練習(xí)冊答案