已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(I)求動點P的軌跡C的方程;
(II)試根據(jù)λ的取值情況討論軌跡C的形狀.
(Ⅰ)由題設(shè)知直線PM與PN的斜率存在且均不為零
所以kPM•kPN=
y
x+1
y
x-1
=λ,整理得x2-
y2
λ
=1
(λ≠0,x≠±1)(4分)
(Ⅱ)①當(dāng)λ>0時,軌跡C為中心在原點,焦點在x軸上的雙曲線(除去頂點)
②當(dāng)-1<λ<0時,軌跡C為中心在原點,焦點在x軸上的橢圓(除去長軸兩個端點)
③當(dāng)λ=-1時,軌跡C為以原點為圓心,1的半徑的圓除去點(-1,0),(1,0)
④當(dāng)λ<-1時,軌跡C為中心在原點,焦點在y軸上的橢圓(除去短軸的兩個端點)(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓相交于兩點(1,3)和(m,1),兩圓的圓心都在直線x-y+
c
2
=0上,則m+c=( 。
A.-1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩點M(1,
5
4
),N(-4,-
5
4
),給出下列曲線方程:
①4x+2y-1=0
②x2+y2=3
x2
2
+y2=1

x2
2
-y2=1

在曲線上存在P滿足|MP|=|NP|的所有曲線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系內(nèi),動點P到x軸、y軸的距離之積等于1,則點P的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為
p
2
,A、B為直線a上的兩個定點,且AB=2p,MN是在直線b上滑動的長度為2p的線段.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求△AMN的外心C的軌跡E;
(2)當(dāng)△AMN的外心C在E上什么位置時,使d+BC最?最小值是多少?(其中,d為外心C到直線c的距離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點P是以F1,F(xiàn)2為焦點的橢圓上的一點,過焦點F2作∠F1PF2的外角平分線的垂線,垂足為M點,則點M的軌跡是( 。
A.拋物線B.橢圓C.雙曲線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)P的軌跡是曲線C,滿足:點P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),又點M(2,-
2
)
在曲線C上,點N(-1,1)在曲線C的內(nèi)部.
(1)求曲線C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1的棱長為1,點M在AB上,且AM=
1
3
,點P是平面ABCD上的動點,且動點P到直線A1D1的距離與動點P到點M的距離的平方差為1,則動點的軌跡是(  )
A.圓B.拋物線C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點為A,異于點A的兩動點B、C分別在l1、l2上,且BC=3,則過A、B、C三點的動圓所形成的圖形面積為( 。
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

同步練習(xí)冊答案