(本大題分兩小題,每小題7分,共14分)
(1)極坐標(biāo)系中,A為曲線上的動點(diǎn),B為直線的動點(diǎn),求距離的最小值。
(2)求函數(shù)y=的最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以O(shè)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù),)。
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個公共點(diǎn)時,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長度單位相同.圓的參數(shù)方程為(為參數(shù)),點(diǎn)的極坐標(biāo)為. (1)化圓的參數(shù)方程為極坐標(biāo)方程;
(2)若點(diǎn)是圓上的任意一點(diǎn), 求,兩點(diǎn)間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

((本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸與直角坐標(biāo)系中軸的正半軸重合.曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程是

(Ⅰ)求曲線的直角坐標(biāo)方程并畫出草圖;
(Ⅱ)設(shè)曲線相交于,兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù))。
(1)  求極點(diǎn)在直線上的射影點(diǎn)的極坐標(biāo);
(2)  若、分別為曲線、直線上的動點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,過圓內(nèi)接四邊形的頂點(diǎn)引圓的切線 ,為圓直徑,若∠=,則∠=(       )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中.曲線的極坐標(biāo)方程為
(1)分別把曲線化成普通方程和直角坐標(biāo)方程;并說明它們分別表示什么曲線.
(2)在曲線上求一點(diǎn),使點(diǎn)到曲線的距離最小,并求出最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過圓的圓心且與極軸垂直的直線的極坐標(biāo)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,分別延長圓內(nèi)接四邊形ABCD兩組對邊相交于E和F兩點(diǎn),如果∠E=30°,∠F=50°,那么∠A為

A.55°B.50°
C.45°D.40°

查看答案和解析>>

同步練習(xí)冊答案