【題目】已知函數(shù)與都是定義在上的奇函數(shù), 當(dāng)時,,則(4)的值為____.
【答案】2
【解析】
根據(jù)題意,由f(x﹣1)是定義在R上的奇函數(shù)可得f(x)=﹣f(﹣2﹣x),結(jié)合函數(shù)為奇函數(shù),分析可得f(x)=f(x﹣2),則函數(shù)是周期為2的周期函數(shù),據(jù)此可得f()=f()=﹣f(),結(jié)合函數(shù)的解析式可得f()的值,結(jié)合函數(shù)的奇偶性與周期性可得f(0)的值,相加即可得答案.
根據(jù)題意,f(x﹣1)是定義在R上的奇函數(shù),則f(x)的圖象關(guān)于點(﹣1,0)對稱,
則有f(x)=﹣f(﹣2﹣x),
又由f(x)也R上的為奇函數(shù),則f(x)=﹣f(﹣x),且f(0)=0;
則有f(﹣2﹣x)=f(﹣x),即f(x)=f(x﹣2),
則函數(shù)是周期為2的周期函數(shù),
則f()=f()=﹣f(),又由f()=log2()=﹣2,則f()=2,
f(4)=f(0)=0,
故f()+f(4)=2+0=2;
故答案為:2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為提高服務(wù)質(zhì)量,隨機調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務(wù)給出滿意或不滿意的評價,得到下面列聯(lián)表:
滿意 | 不滿意 | |
男顧客 | 40 | 10 |
女顧客 | 30 | 20 |
(1)分別估計男、女顧客對該商場服務(wù)滿意的概率;
(2)能否有95%的把握認(rèn)為男、女顧客對該商場服務(wù)的評價有差異?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極是中國古代的哲學(xué)術(shù)語,意為派生萬物的本源.太極圖是以黑白兩個魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓被的圖象分割為兩個對稱的魚形圖案,圖中的兩個一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為,現(xiàn)在大圓內(nèi)隨機投放一點,則此點投放到“魚眼”部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題中,正確的題號是__________.
①函數(shù)的最值一定是極值;
②設(shè):實數(shù),滿足;:實數(shù),滿足,則是的充分不必要條件;
③已知橢圓:與雙曲線:的焦點重合,、分別為、的離心率,則,且;
④一動圓過定點,且與已知圓:相切,則動圓圓心的軌跡方程是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市民用水?dāng)M實行階梯水價,每人用水量中不超過立方米的部分按4元/立方米收費,超出立方米的部分按10元/立方米收費,從該市隨機調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米, 至少定為多少?
(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)時,估計該市居民該月的人均水費.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個焦點分別為F1(-1,0)、F2(1,0),短軸的兩個端點分別為B1,B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長為2,過點F2的直線l與橢圓C相交于P,Q兩點,且,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com