【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過(guò)立方米的部分按4/立方米收費(fèi),超出立方米的部分按10/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:

1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4/立方米, 至少定為多少?

2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).

【答案】3;(10.5.

【解析】試題分析:(1)根據(jù)水量的頻率分布直方圖知月用水量不超過(guò)立方米的居民占,所以至少定為;(2)直接求每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值與各組頻率的乘積之和即可.

試題解析:(1)由用水量的頻率分布直方圖知,

該市居民該月用水量在區(qū)間內(nèi)的頻率依次為

所以該月用水量不超過(guò)立方米的居民占,用水量不超過(guò)立方米的居民占.依題意, 至少定為

2)由用水量的頻率分布直方圖及題意,得居民該月用水費(fèi)用的數(shù)據(jù)分組與頻率分布表:

組號(hào)

1

2

3

4

5

6

7

8

分組









頻率

0.1

0.15

0.2

0.25

0.15

0.05

0.05

0.05

根據(jù)題意,該市居民該月的人均水費(fèi)估計(jì)為:

(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖3,是一個(gè)直角梯形,,邊上一點(diǎn),、相交于,,.將△沿折起,使平面⊥平面,連接、,得到如圖4所示的四棱錐

(Ⅰ)求證:⊥平面

(Ⅱ)求直線與面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20175月,來(lái)自一帶一路沿線的20國(guó)青年評(píng)選出了中國(guó)的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購(gòu)。為拓展市場(chǎng),某調(diào)研組對(duì)甲、乙兩個(gè)品牌的共享單車在5個(gè)城市的用戶人數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

城市

品牌

甲品牌(百萬(wàn))

4

3

8

6

12

乙品牌(百萬(wàn))

5

7

9

4

3

Ⅰ)如果共享單車用戶人數(shù)超過(guò)5百萬(wàn)的城市稱為優(yōu)質(zhì)潛力城市,否則非優(yōu),請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為優(yōu)質(zhì)潛力城市與共享單車品牌有關(guān)?

Ⅱ)如果不考慮其它因素,為拓展市場(chǎng),甲品牌要從這5個(gè)城市中選出3個(gè)城市進(jìn)行大規(guī)模宣傳.

①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;

②以表示選中的城市中用戶人數(shù)超過(guò)5百萬(wàn)的個(gè)數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: K2=,n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

(3)過(guò)原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三理科某班有男同學(xué)30,女同學(xué)15老師按照分層抽樣的方法組建一個(gè)6人的課外興趣小組.

(1)求課外興趣小組中男、女同學(xué)各應(yīng)抽取的人數(shù);

(2)在一周的技能培訓(xùn)后從這6人中選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn)方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選1名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰好僅有一名女同學(xué)的概率;

(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為1.6、21.9、2.52,第二次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)是2.11.8、1.9、2、2.2,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(ax2bxc)ex(a>0)的導(dǎo)函數(shù)yf′(x)的兩個(gè)零點(diǎn)為-3和0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)的極小值為-1,求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線與直線垂直.

(1)求實(shí)數(shù)值;

(2)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),且數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若時(shí),關(guān)于的方程有唯一解,求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案