設函數(shù),,其中為實數(shù),若在上是單調減函數(shù),且在上有最小值,求的取值范圍.
a∈(e,+∞)
解析試題分析:分別利用導數(shù)求出單調區(qū)間與在上的最小值,與給定的在上是單調減函數(shù),且在上有最小值相結合,得出關于的關系式,可得的取值范圍.
解:令,
考慮到f(x)的定義域為(0,+∞),故a>0,進而解得x>a-1,即f(x)在(a-1,+∞)上是單調減函數(shù),
同理,f(x)在(0,a-1)上是單調增函數(shù).
由于f(x)在(1,+∞)上是單調減函數(shù),故(1,+∞)(a-1,+∞),從而a-1≤1,即a≥1,
令g'(x)=ex-a=0,得.
當時, ;當x>時, .
又g(x)在(1,+∞)上有最小值,所以,
即a>e.綜上,有a∈(e,+∞).
考點:利用導數(shù)求函數(shù)的單調區(qū)間與最值.
科目:高中數(shù)學 來源: 題型:解答題
已知,.
(1)若的單調減區(qū)間是,求實數(shù)a的值;
(2)若對于定義域內的任意x恒成立,求實數(shù)a的取值范圍;
(3)設有兩個極值點, 且.若恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù)).
(1)若是函數(shù)的一個極值點,求的值;
(2)當時,試判斷的單調性;
(3)若對任意的,使不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù) .
(1) 當時,求函數(shù)的極值;
(2)若,證明:在區(qū)間內存在唯一的零點;
(3)在(2)的條件下,設是在區(qū)間內的零點,判斷數(shù)列的增減性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)是定義在集合M上的函數(shù).若區(qū)間D⊆M,且對任意x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
(2)若函數(shù)g(x)=在區(qū)間[3,10]上封閉,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z,且a≠b)上封閉,求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com