【題目】已知函數.
(1)若曲線在和處的切線互相平行,求的值;
(2)求的單調區(qū)間;
(3)設,若對任意,均存在,使得,求的取值范圍.
【答案】(1)(2)詳見解析(3)
【解析】試題分析:(1)根據導數幾何意義得列等量關系,解得;(2)先研究函數零點: ;當時,一個零點;當時,兩個零點,此時再比較兩個零點大小,需分三種情況討論:最后列表分析導函數符號變化規(guī)律,確定函數單調區(qū)間;(3)任意存在性問題,一般先轉化為對應函數最值問題: ,易確定的最大值為,此時可繼續(xù)分類討論求的最大值,也可以再利用變量分離轉化為對應函數最值: 的最大值.
試題解析:(1)由題意知, ,即,解得.
(2).①當時, ,在區(qū)間上, ;在區(qū)間上, ,故的單調遞增區(qū)間是,單調遞減區(qū)間是.②當時,在區(qū)間和上, ;在區(qū)間上, ,故的單調遞增區(qū)間是和,單調遞減區(qū)間是.③當時, ,故的單調遞增區(qū)間是.④當時, ,在區(qū)間和上, ;在區(qū)間上, ,故的單調遞增區(qū)間是和,單調遞減區(qū)間是.
(3)由題意知,在上有,由已知得, ,由(2)可知,①當時, 在上單調遞增,故,所以,解得,故.②當時, 在上單調遞增,在上單調遞減,故,由可知,即,
綜上所述, .
科目:高中數學 來源: 題型:
【題目】設橢圓()的右焦點為,右頂點為,已知,其中為坐標原點,為橢圓的離心率.
(1)求橢圓的方程;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓的參數方程為為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)設直線與軸,軸分別交于兩點,點是圓上任一點,求兩點的極坐標和面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
已知平面直角坐標系,以為極點,軸的非負半軸為極軸建立極坐標系,點的極坐標為,曲線的參數方程為(為參數).
(1)寫出點的直角坐標及曲線的直角坐標方程;
(2)若為曲線上的動點,求中點到直線的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差為3的等差數列,數列{bn}是b1=1的等比數列,且.
(Ⅰ)分別求數列{an},{bn}的通項公式;
(Ⅱ)令cn= an bn,求數列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為(下上),且兩點滿足.
(1)求橢圓的標準方程;
(2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線在軸、軸上的截距分別為,證明:為定值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com