【題目】在平面直角坐標(biāo)系中,動點(diǎn)到點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為.
(1)求的方程;
(2)設(shè)點(diǎn)在曲線上,軸上一點(diǎn)(在點(diǎn)右側(cè))滿足,若平行于的直線與曲線相切于點(diǎn),試判斷直線是否過點(diǎn)?并說明理由.
【答案】(1) (2)直線過點(diǎn),理由見解析
【解析】
(1)由拋物線的定義求出的方程;
(2)根據(jù)拋物線的定義表示出點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)寫出直線的斜率,進(jìn)而得到直線的方程,將直線與拋物線方程聯(lián)立,結(jié)合判別式得出,進(jìn)而得出點(diǎn)D的坐標(biāo),求出直線的斜率,討論和,得出直線的方程,即可判斷直線是否過點(diǎn).
解:(1)根據(jù)拋物線的定義得,動點(diǎn)的軌跡是以為焦點(diǎn),直線的拋物線.
(2)由題設(shè),則,
又,故
由于,則直線不與軸垂直
令平行于的直線,則,
將直線代入,得,
整理……①
,
當(dāng)時,直線AB為軸,此時不存在平行于的直線與曲線相切于點(diǎn)
即
所以①可以化為
,,
當(dāng)時
,
,過定點(diǎn)
當(dāng)時,也過點(diǎn),故直線過點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點(diǎn)為,,是上的動點(diǎn),則下列結(jié)論正確的是( )
A.B.離心率
C.面積的最大值為D.以線段為直徑的圓與直線相切
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
對變量t與y進(jìn)行相關(guān)性檢驗,得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測該地區(qū)2016年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽測試得學(xué)生中隨機(jī)抽取60名學(xué)生,將其成績(百分制均為整數(shù))分成6段,,…,后得到如下部分頻率直方分布圖,觀察圖形得信息,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率;
(2)若用樣本估計總體,已知該校參加知識競賽一共有300人,請估計本次考試成績不低于80分的人數(shù);
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間中點(diǎn)值作為代表,據(jù)此估計本次考試的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信作為一款社交軟件已經(jīng)在支付,理財,交通,運(yùn)動等各方面給人的生活帶來各種各樣的便利.手機(jī)微信中的“微信運(yùn)動”,不僅可以看自己每天的運(yùn)動步數(shù),還可以看到朋友圈里好友的步數(shù). 先生朋友圈里有大量好友使用了“微信運(yùn)動”這項功能.他隨機(jī)選取了其中40名,記錄了他們某一天的走路步數(shù),統(tǒng)計數(shù)據(jù)如下表所示:
(1)以樣本估計總體,視樣本頻率為概率,在先生的微信朋友圈里的男性好友中任意選取3名,其中走路步數(shù)不低于6000步的有名,求的分布列和數(shù)學(xué)期望;
(2)如果某人一天的走路步數(shù)不低于8000步,此人將被“微信運(yùn)動”評定為“運(yùn)動達(dá)人”,否則為“運(yùn)動鳥人”.根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%以上的把握認(rèn)為“評定類型”
與“性別”有關(guān)?
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線與直線平行.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在上恰有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點(diǎn)分別是,,點(diǎn)為的上頂點(diǎn),點(diǎn)在上,,且.
(1)求的方程;
(2)已知過原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線過且與橢圓交于,兩點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將標(biāo)號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片.把每列標(biāo)號最小的卡片選出,將這些卡片中標(biāo)號最大的數(shù)設(shè)為a;把每行標(biāo)號最大的卡片選出,將這些卡片中標(biāo)號最小的數(shù)設(shè)為b.
甲同學(xué)認(rèn)為a有可能比b大,乙同學(xué)認(rèn)為a和b有可能相等.那么甲乙兩位同學(xué)中說法正確的同學(xué)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,面是直角梯形,,,面是菱形,,,.
(I)證明:;
(I)已知點(diǎn)在線段上,且,若二面角的大小為,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com