精英家教網 > 高中數學 > 題目詳情

已知△ABC的兩個頂點坐標為A(-20),B(2,0),第三個頂點C在直線2x3y5=0上,則△ABC的重心G的軌跡方程為

[  ]

A2x3y5=0(y0)

B6x9y5=0(y0)

C6x3y5=0(x0)

D6x-9y5=0(x0)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC的兩個頂點A、B的坐標分別是(-5,0)、(5,0),邊AC、BC所在直線的斜率之積為-
12
,求頂點C的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的兩個頂點A、B分別是橢圓
x2
25
+
y2
9
=1 的左、右焦點,三個內角A、B、C滿足sinA-sinB=
1
2
sinC,則頂點C的軌跡方程是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的兩個頂點坐標為B(1,4)、C(6,2),頂點A在直線x-y+3=0上,若△ABC的面積為21.則頂點A的坐標為
(7,10)或(-5,-2)
(7,10)或(-5,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的兩個頂點B,C的坐標分別為(-1,0)和(1,0),頂點A為動點,如果△ABC的周長為6.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)過點P(2,0)作直線l,與軌跡M交于點Q,若直線l與圓x2+y2=2相切,求線段PQ的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,已知△ABC的兩個頂點B(-3,0),C(3,0)且三邊AC、BC、AB的長成等差數列,求點A的軌跡方程.

查看答案和解析>>

同步練習冊答案