已知:函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的最大值及此時(shí)x的值;
(2)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且對(duì)f(x)定義域中的任意的x都有f(x)≤f(A).現(xiàn)在給出三個(gè)條件:①a=2;②B=45°;③數(shù)學(xué)公式,試從中選出兩個(gè)可以確定△ABC的條件,寫出你的選擇并以此為依據(jù)求△ABC的面積.(只需寫出一個(gè)選定方案即可)

解:(1)
=
=
=
=…4分
所以當(dāng)=2kπ+,k∈Z時(shí),f(x)取最大值3,
此時(shí),x=kπ+,k∈Z;…(6分)
(2)由f(A)是f(x)的最大值及A∈(0,π),得到,A=,
方案1 選擇①②…(7分)
由正弦定理,則b=2,
sinC=sin(A+B)=,…(10分)
所以,面積S=a•b•sinC=+1.…(12分)
分析:(1)由已知中函數(shù).利用兩角和的余弦公式,及二倍角公式,輔助角公式,可以將式子化簡(jiǎn)為一個(gè)正弦型函數(shù)的形式,根據(jù)正弦型函數(shù)的性質(zhì),即可得到答案.
(2)由已知中對(duì)f(x)定義域中的任意的x都有f(x)≤f(A),我們易求出A的大小,結(jié)合:①a=2;②B=45°;③,易求出△ABC的面積.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是三角函數(shù)中的恒等變換應(yīng)用,三角形中的幾何計(jì)算,三角函數(shù)的最值,解三角形,其中(1)的關(guān)鍵是化簡(jiǎn)函數(shù)的解析式為一個(gè)正弦型函數(shù)的形式,(2)的關(guān)鍵是求出A的大。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島市即墨一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知奇函數(shù),
(1)求實(shí)數(shù)m的值
(2)做y=f(x)的圖象(不必寫過程)
(3)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南省高一第一次考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知奇函數(shù);

(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出的圖象;

(2)若函數(shù)在區(qū)間[-1,||-2]上單調(diào)遞增,試確定的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東東莞第七高級(jí)中學(xué)高一下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)

已知:函數(shù)

(1)求函數(shù)的最小正周期和當(dāng)時(shí)的值域;

(2)若函數(shù)的圖象過點(diǎn),.求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市崇明縣高三第一學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本題14分,第(1)小題4分,第(2)小題10分).

  已知:函數(shù)

(1)求的值;

(2)設(shè),求的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高二下學(xué)期期末考試文科數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)  已知,函數(shù)

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)若函數(shù)在區(qū)間上有極值,求的取值范圍;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案