已知函數(shù)
(1)試判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(2)若恒成立,求實(shí)數(shù)的取值范圍.

(1)遞減
(2) 

解析試題分析:解:(1)    
遞減 ..............4分
2)   記
           7分
再令    
 上遞增。          10分
,從而 故上也單調(diào)遞增
                13分
考點(diǎn):函數(shù)單調(diào)性
點(diǎn)評(píng):主要是考查了函數(shù)單調(diào)性的運(yùn)用,以及函數(shù)單調(diào)性與導(dǎo)數(shù)的符號(hào)的關(guān)系的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)l為曲線C:在點(diǎn)(1,0)處的切線.
(I)求l的方程;
(II)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一矩形鐵皮的長(zhǎng)為8cm,寬為5cm,在四個(gè)角上截去四個(gè)相同的小正方形,制成一個(gè)無(wú)蓋的小盒子,問(wèn)小正方形的邊長(zhǎng)為多少時(shí),盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間[0,3]上的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+a x.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于或等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)上無(wú)零點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)任意的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)和“偽二次函數(shù)” .
(Ⅰ)證明:只要,無(wú)論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點(diǎn)A(),B(),線段AB中點(diǎn)為C(),記直線AB的斜率為k.
(1)對(duì)于二次函數(shù),求證;
(2)對(duì)于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)定函數(shù) (>0),且方程的兩個(gè)根分別為1,4。
(Ⅰ)當(dāng)=3且曲線過(guò)原點(diǎn)時(shí),求的解析式;
(Ⅱ)若無(wú)極值點(diǎn),求a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案