【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購不會(huì)超過600件.
(1)設(shè)一次訂購件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤最大?其最大利潤是多少?
【答案】(1)
(2)當(dāng)一次訂購550件服裝時(shí),該廠獲得的利潤最大,最大利潤為6050元
【解析】試題分析:(1)由題意單價(jià)P是關(guān)于x的分段函數(shù)。(2)先寫出利潤關(guān)于訂購量x的分段函數(shù)再計(jì)算x=450時(shí)的利潤.
試題解析:(1)當(dāng)0<x≤100時(shí),P=60;
當(dāng)100<x≤500時(shí),P=60-0.02(x-100)=62-.
所以P=
(2)設(shè)銷售商一次訂購量為x件,工廠獲得的利潤為L元,則有
L=(P-40)x=
當(dāng)x=450時(shí),L=5850.
因此,當(dāng)銷售商一次訂購450件服裝時(shí),該服裝廠獲得的利潤是5850元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上,且圓經(jīng)過點(diǎn)與點(diǎn).
(1)求圓的方程;
(2)過點(diǎn)作圓的切線,求切線所在的直線的方程.
【答案】(1);(2)或.
【解析】試題分析:(1)求出線段的中點(diǎn),進(jìn)而得到線段的垂直平分線為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求
(2)當(dāng)切線斜率不存在時(shí),可知切線方程為.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.
試題解析:((1)設(shè) 線段的中點(diǎn)為,∵,
∴線段的垂直平分線為,與聯(lián)立得交點(diǎn),
∴.
∴圓的方程為.
(2)當(dāng)切線斜率不存在時(shí),切線方程為.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為,即,
則到此直線的距離為,解得,∴切線方程為.
故滿足條件的切線方程為或.
【點(diǎn)睛】本題考查圓的方程的求法,圓的切線,中點(diǎn)弦等問題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線的距離公式求解.
【題型】解答題
【結(jié)束】
20
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬元)與產(chǎn)品銷售收入(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(銷售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求關(guān)于的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?
相關(guān)公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)男女學(xué)生是否喜愛古典音樂進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛 | 不喜愛 | 總計(jì) | |
男學(xué)生 | 60 | 80 | |
女學(xué)生 | |||
總計(jì) | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再從這10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有X個(gè)男生去觀看演出的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),短軸長(zhǎng)為,點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線與橢圓交于, 兩點(diǎn), 為弦中點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)在某一學(xué)校隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,測(cè)試成績(jī)(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則( )
A.me=m0=
B.me=m0<
C.me<m0<
D.m0<me<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信支付誕生于微信紅包,早期知識(shí)作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來微信支付不僅可以用來發(fā)紅包,還可以用來支付,現(xiàn)在微信支付被越來越多的人們所接受,現(xiàn)從某市市民中隨機(jī)抽取300為對(duì)是否使用微信支付進(jìn)行調(diào)查,得到下列的列聯(lián)表:
年輕人 | 非年輕人 | 總計(jì) | |
經(jīng)常使用微信支付 | 165 | 225 | |
不常使用微信支付 | |||
合計(jì) | 90 | 300 |
根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計(jì)學(xué)的結(jié)論是:由__________的把握認(rèn)為“使用微信支付與年齡有關(guān)”。
|
| ||||
|
其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com