【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,且x1<x2.
(1)求b的取值范圍;
(2)當(dāng)x2≥2時,證明x1·<2.
【答案】(1)b的取值范圍是(-∞,-1);(2)見解析.
【解析】試題分析:(1)先轉(zhuǎn)化為方程兩個根的情況,再研究函數(shù)g(x)=x-ln x+b單調(diào)性,根據(jù)函數(shù)圖像確定有兩個零點的條件,即得b的取值范圍;(2)先根據(jù)零點構(gòu)造差函數(shù):g(x1)-g= g(x2)-g,再利用導(dǎo)數(shù)研究差函數(shù)的單調(diào)性,最后根據(jù)單調(diào)性證明不等式.
試題解析:(1)解 由題意可得x-ln x+b=0有兩個不同的實根.
設(shè)g(x)=x-ln x+b(x>0),
則g'(x)=1-(x>0).
當(dāng)0<x<1時,g'(x)<0,g(x)單調(diào)遞減;
當(dāng)x>1時,g'(x)>0,g(x)單調(diào)遞增.
可得g(x)在x=1處取得最小值b+1,
當(dāng)b<-1時,b=ln x-x在(0,1)和(1,+∞)各有一個實根,
故b的取值范圍是(-∞,-1).
(2)證明 由(1)可得0<x1<1,x2>1,g(x1)=g(x2)=0,
故g(x1)-g=(x1-ln x1+b)-=(x2-ln x2+b)-=x2-3ln x2-+ln 2.
令h(t)=t--3ln t+ln 2,
則h'(t)=1-
=.
當(dāng)t≥2時,h'(t)≥0,h(t)單調(diào)遞增,
即h(t)≥h(2)=-2ln 2>0,
所以當(dāng)x2≥2時,g(x1)-g>0,
即g(x1)>g.
因為g(x)在(0,1)內(nèi)單調(diào)遞減,且0<x1<1,0<<1,
所以x1<,可得x1·<2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若曲線與曲線在公共點處有共同的切線,求實數(shù)的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點?如果有,求出該零點;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓上, 為橢圓的右焦點, 分別為橢圓的左,右兩個頂點.若過點且斜率不為0的直線與橢圓交于兩點,且線段的斜率之積為.
(1)求橢圓的方程;
(2)已知直線與相交于點,證明: 三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當(dāng)天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.
(Ⅰ)若小店一天購進16份,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購進16份這種食品,表示當(dāng)天的利潤(單位:元),求的分布列及數(shù)學(xué)期望;
(ii)以小店當(dāng)天利潤的期望值為決策依據(jù),你認為一天應(yīng)購進食品16份還是17份?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實數(shù),若不能,請說明理由;
(Ⅱ)求最大的整數(shù),使得對任意,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中, 平面,底面是梯形, , , , , , 為的中點, 為上一點,且().
(1)若時,求證: 平面;
(2)若直線與平面所成角的正弦值為,求異面直線與直線所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程是(為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于兩點.
(Ⅰ)求直線的普通方程及曲線的直角坐標方程;
(Ⅱ)把直線與軸的交點記為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中, ,點、分別在線段、上,且,將沿折起到的位置,使得二面角的大小為.
(1)求證:;
(2)當(dāng)點為線段的靠近點的三等分點時,求與平面 所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com