【題目】已知,,,是半徑為的球面上的點(diǎn),,,點(diǎn)在上的射影為,則三棱錐體積的最大值是( )
A. B.
C. D.
【答案】B
【解析】如圖,
由題意,PA=PB=PC=2,∠ABC=90°,
可知P在平面ABC上的射影G為△ABC的外心,即AC中點(diǎn),
則球的球心在PG的延長(zhǎng)線上,設(shè)PG=h,則OG=2﹣h,
∴OB2﹣OG2=PB2﹣PG2,即4﹣(2﹣h)2=4﹣h2,解得h=1.
則AG=CG=,
過B作BD⊥AC于D,設(shè)AD=x,則CD=,
再設(shè)BD=y,由△BDC∽△ADB,可得,
∴y=, ,
令f(x)=,則f′(x)=
由f′(x)=0,可得x=,
∴當(dāng)x=時(shí),f(x)max=,
∴△ABD面積的最大值為,
則三棱錐P﹣ABD體積的最大值是
故答案為:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4,坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,橢圓C的方程為,以O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求|x+y﹣1|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)軸為極軸的極坐標(biāo)系中,曲線:(為極角).
(1)將曲線化為極坐標(biāo)方程,當(dāng)時(shí),將化為直角坐標(biāo)方程;
(2)若曲線與相交于一點(diǎn),求點(diǎn)的直角坐標(biāo)使到定點(diǎn)的距離最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓M:長(zhǎng)軸上的兩個(gè)頂點(diǎn)為、,點(diǎn)P為橢圓M上除、外的一個(gè)動(dòng)點(diǎn),若且,則動(dòng)點(diǎn)Q在下列哪種曲線上運(yùn)動(dòng)( )
A. 圓 B. 橢圓 C. 雙曲線 D. 拋物線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè),求的最小值;
(2)證明:當(dāng)時(shí),總存在兩條直線與曲線與都相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《漢字聽寫大會(huì)》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽寫測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在到之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;
(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個(gè)極值點(diǎn)且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠(yuǎn)時(shí),視角最大?
(2)若當(dāng)變化時(shí),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com