【題目】已知橢圓的兩個焦點(diǎn)與短軸的一個頂點(diǎn)構(gòu)成底邊為,頂角為的等腰三角形.
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上三動點(diǎn),且,線段的中點(diǎn)為,,求的取值范圍.
【答案】(1)(2)
【解析】分析:(1)兩個焦點(diǎn)與短軸的一個頂點(diǎn)構(gòu)成底邊為,頂角為的等腰三角形.說明,再由直角三角形得,從而可得值,得標(biāo)準(zhǔn)方程;
(2)關(guān)鍵是把表示為一個變量的函數(shù),當(dāng)直線斜率不存在時,可直接求出的長,當(dāng)直線斜率存在時,設(shè)其方程為,與橢圓方程聯(lián)立方程組,變形后由判別式寫出一個不等關(guān)系,并設(shè),由韋達(dá)定理得出,由表示出點(diǎn)坐標(biāo)代入橢圓方程得,代入剛才的得的關(guān)系式:,它滿足判別式>0,計算中點(diǎn)的坐標(biāo),再計算線段長,最終表示為的函數(shù),從而中求得取值范圍.
詳解:(1)由題意,,,∴,
∴橢圓
(2)設(shè),,,
由
∴,得:
當(dāng)的斜率不存在時,,
由,,得,∴,
當(dāng)的斜率存在時,設(shè)
得:,
,
由點(diǎn)在橢圓上得得:,此時總成立
又,
∴,
∴且,∴且
綜上:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=4x焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A、C位于x軸同側(cè),若|AC|=2|AF|,則|BF|等于( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運(yùn)動會上,他們四人要組成一個米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(Ⅰ)求函數(shù)的解析式和當(dāng)時的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動個長度單位,再向下平移1個長度單位,得到的圖象,用“五點(diǎn)法”作出在內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個最大值和一個最小值,且當(dāng)時函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為.
(1)求出此函數(shù)的解析式;
(2)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值;
(3)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲和乙玩一個猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫有1﹣六個數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機(jī)抽取一張,然后根據(jù)自己手中的數(shù)推測誰手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說:我不知道誰手中的數(shù)更大;乙聽了甲的判斷后,思索了一下說:我知道誰手中的數(shù)更大了.假設(shè)甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構(gòu)成的集合是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=.
(1)化簡f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com