【題目】設(shè)圓的圓心為A,直線過點B(1,0)且與軸不重合,交圓AC,D兩點,過BAC的平行線交AD于點E.

(Ⅰ)證明:為定值,并寫出點E的軌跡方程;

(Ⅱ)設(shè)點E的軌跡為曲線C1,直線C1M,N兩點,過B且與垂直的直線與C1交于P,Q兩點, 求證:是定值,并求出該定值.

【答案】(I));(II)

【解析】

(I)根據(jù)幾何關(guān)系,即可證明為定值,再利用橢圓的定義即可求出點E的軌跡方程;

(Ⅱ)利用點斜式設(shè)出直線的方程,與橢圓方程聯(lián)立方程組,得到關(guān)于的一元二次方程,利用根與系數(shù)關(guān)系以及弦長公式表示出,同理可得,代入中進行化簡即可證明為定值。

(I)因為,,故,

所以,故.

又圓的標(biāo)準(zhǔn)方程為,從而,

所以,由題設(shè)得,,,

由橢圓定義可得點的軌跡方程為:).

(II)依題意:軸不垂直,設(shè)的方程為,,.

得,.

,.

所以.

同理:(定值)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側(cè)視圖中的的值為 ( )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ;在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

(1)a=1,求Cl交點的直角坐標(biāo);

(2)C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱錐中,點的中點,且,底面邊長,則正三棱錐的外接球的表面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈N*).

(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;

(2)若該函數(shù)還經(jīng)過點(2, ),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“三個臭皮匠,賽過諸葛亮”,這是我們常說的口頭禪,主要是說集體智慧的強大. 假設(shè)李某智商較高,他獨自一人解決項目M的概率為;同時,有個水平相同的人也在研究項目M,他們各自獨立地解決項目M的概率都是.現(xiàn)在李某單獨研究項目M,且這個人組成的團隊也同時研究項目M,設(shè)這個人團隊解決項目M的概率為,若,則的最小值是( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形中,為線段的中點.將沿折起,使平面平面,得到幾何體,如圖2所示.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,解不等式;

(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(II)證明:.

查看答案和解析>>

同步練習(xí)冊答案