【題目】如圖,設(shè)為拋物線上不同的四點,且點關(guān)于軸對稱,平行于該拋物線在點處的切線.
(1)求證:直線與直線的傾斜角互補;
(2)若,且的面積為16,求直線的方程.
【答案】(1)見解析;(2)
【解析】分析:(1)設(shè),則由導(dǎo)數(shù)的幾何意義可得,于是可設(shè)直線的方程為,代入拋物線方程得到關(guān)于x的一元二次方程,然后根據(jù)斜率公式和根與系數(shù)的關(guān)系證得,即證得直線與直線的傾斜角互補.(2)由可得,由斜率公式可得,然后由弦長公式得,,再根據(jù)的面積為16得,,從而可得直線的方程.
詳解:(1)設(shè),
則.
設(shè)直線的方程為,
由消去y整理得,
因為直線與拋物線交于兩點,
所以.
設(shè),
則.
因為,
所以直線與直線的傾斜角互補.
(2)因為,
所以,
即,.
所以,
則,,
所以,
解得,
所以,
故,
解得.
所以當(dāng)時,直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月份上合峰會在青島召開,面向高校招募志愿者,中國海洋大學(xué)海洋環(huán)境學(xué)院的8名同學(xué)符合招募條件并審核通過,其中大一、大二、大三、大四每個年級各2名.若將這8名同學(xué)分成甲乙兩個小組,每組4名同學(xué),其中大一的兩名同學(xué)必須分到同一組,則分到乙組的4名同學(xué)中恰有2名同學(xué)是來自于同一年級的分組方式共有__________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求實數(shù)m的值;
(2)若l1∥l2,求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| ﹣ |
(2)若 與 夾角為銳角,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,;數(shù)列的前項和是,且+=1.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,若E、F分別為PC、BD的中點. (Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|x﹣1|+|2x+3|.
(1)若f(x)≥m對一切x∈R都成立,求實數(shù)m的取值范圍;
(2)解不等式f(x)≤4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com