【題目】小明用數(shù)列{an}記錄某地區(qū)201912月份31天中每天是否下過雨,方法為:當?shù)?/span>k天下過雨時,記ak1,當?shù)?/span>k天沒下過雨時,記ak=﹣11≤k≤31);他用數(shù)列{bn}記錄該地區(qū)該月每天氣象臺預報是否有雨,方法為:當預報第k天有雨時,記bk1,當預報第k天沒有雨時,記bk=﹣11≤k≤31);記錄完畢后,小明計算出a1b1+a2b2+…+a31b3125,那么該月氣象臺預報準確的的總天數(shù)為_____;若a1b1+a2b2+…+akbkm,則氣象臺預報準確的天數(shù)為_____(用mk表示).

【答案】28

【解析】

根據(jù)題意得到akbk1表示第k天預報正確,akbk=﹣1表示第k天預報錯誤,從而得到,根據(jù)得到該月氣象臺預報準確的的總天數(shù).

依題意,若),則表示第天預報正確,

),則表示第天預報錯誤,

,

假設其中有天預報正確,即等式的左邊有,

,解得,

即氣象臺預報準確的天數(shù)為;

于是若,

則氣象臺預報準確的天數(shù)為.

故答案為:,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為,圓與直線交于, 兩點, 點的直角坐標為

)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,求函數(shù)的最大值;

2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;

3)當,,方程有唯一實數(shù)解,求正數(shù)的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;

(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)上的單調(diào)性;

2)是否存在實數(shù),使得函數(shù)上的最小值為3,若存在,求出的值,若不存在,請說明理由;

3)當,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設l1l2的交點為P,當k變化時,P的軌跡為曲線C.

(1)寫出C的普通方程;

(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3ρ(cosθ+sinθ) =0,Ml3C的交點,求M的極徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是非空數(shù)集,且,設,;

1)若,,求;

2)是否存在實數(shù),使得,且?若存在,請求出滿足條件的實數(shù);若不存在,請說明理由;

3)若,且,是單調(diào)遞增函數(shù),求集合;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統(tǒng)計如下:

賠付金額()

0

1 000

2 000

3 000

4 000

車輛數(shù)()

500

130

100

150

120

(1)若每輛車的投保金額均為2800,估計賠付金額大于投保金額的概率.

(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】趙爽是我國古代數(shù)學家、天文學家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構造如圖所示的圖形,它是由個3全等的等邊三角形與中間的一個小等邊三角形組成的一個大等邊三角形,設DF2AF,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案