【題目】(1)兩個(gè)共軛復(fù)數(shù)的差是純虛數(shù);(2)兩個(gè)共軛復(fù)數(shù)的和不一定是實(shí)數(shù);(3)若復(fù)數(shù)是某一元二次方程的根,則是也一定是這個(gè)方程的根;(4)若為虛數(shù),則的平方根為虛數(shù),其中正確的個(gè)數(shù)為 ( )
A.3B.2C.1D.0
【答案】C
【解析】
直接利用復(fù)數(shù)的基本概念判斷命題的真假即可.
(1)兩個(gè)共軛復(fù)數(shù)的差是純虛數(shù);如果兩個(gè)復(fù)數(shù)是實(shí)數(shù),差值也是實(shí)數(shù),所以(1)不正確;
(2)兩個(gè)共軛復(fù)數(shù)的和不一定是實(shí)數(shù),不正確,和一定是實(shí)數(shù);
(3)若復(fù)數(shù)是某一元二次方程的根,則是也一定是這個(gè)方程的根,不正確,因?yàn)閷?shí)系數(shù)方程的虛根才是共軛復(fù)數(shù),所以(3)不正確;
(4)若為虛數(shù),則的平方根為虛數(shù),設(shè),其平方根為,設(shè),
所以,所以的平方根為虛數(shù).所以該命題正確.
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,,過垂直于長軸的直線交橢圓于、兩點(diǎn),且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某不透明紙箱中共有4個(gè)小球,其中1個(gè)白球,3個(gè)紅球,它們除顏色外均相同.
(Ⅰ)一次從紙箱中摸出兩個(gè)小球,求恰好摸出2個(gè)紅球的概率;
(Ⅱ)每次從紙箱中摸出一個(gè)小球,記錄顏色后放回紙箱,這樣摸取4次,記得到紅球的次數(shù)為,求的分布列;
(Ⅲ)每次從紙箱中摸出一個(gè)小球,記錄顏色后放回紙箱,這樣摸取100次,得到幾次紅球的概率最大?只需寫出結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已數(shù)列的各項(xiàng)均為正整數(shù),且滿足,又.
(1)求的值,猜想的通項(xiàng)公式并用數(shù)學(xué)歸納法證明;
(2)設(shè),求的值;
(3)設(shè),是否存在最大的整數(shù),使得對任意,均有?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計(jì)局進(jìn)行第四次經(jīng)濟(jì)普查,某調(diào)查機(jī)構(gòu)從15個(gè)發(fā)達(dá)地區(qū),10個(gè)欠發(fā)達(dá)地區(qū),5個(gè)貧困地區(qū)中選取6個(gè)作為國家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個(gè)體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營戶 | 90 | 60 | 150 |
合計(jì) | 130 | 70 | 200 |
(1)寫出選擇6個(gè)國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”,分析造成這個(gè)結(jié)果的原因并給出合理化建議.
附:參考公式: ,其中
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形中,,矩形所在平面與平面垂直,且,.
(1)求證:平面平面;
(2)若P為線段上一點(diǎn),且異面直線與所成角為45°,求平面與平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).
(1)若f(x)在(0,1)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=-1時(shí),設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點(diǎn),求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)圓錐的體積為,當(dāng)這個(gè)圓錐的側(cè)面積最小時(shí),其母線與底面所成角的正切值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com