(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長是,求。
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)如圖,、、是橢圓的頂點,是橢圓上除頂點外的任意點,直線交軸于點,直線交于點,設的斜率為,的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設分別為線段的中點.
(1)求橢圓的標準方程;
(2)若為線段的中點,求;
(3)若,求證直線恒過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線的焦點為F過點的直線交拋物線于A,B兩點,直線AF,BF分別與拋物線交于點M,N
(1)求的值;
(2)記直線MN的斜率為,直線AB的斜率為 證明:為定值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:的左焦點為,右焦點為.
(Ⅰ)設直線過點且垂直于橢圓的長軸,動直線垂直于點P,線段的垂直平分線交于點M,求點M的軌跡的方程;
(Ⅱ)設為坐標原點,取曲線上不同于的點,以為直徑作圓與相交另外一點,求該圓的面積最小時點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓()右頂點與右焦點的距離為,短軸長為.
(I)求橢圓的方程;
(II)過左焦點的直線與橢圓分別交于、兩點,若三角形的面積為,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,
(Ⅰ)設直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當點運動時,以為直徑的圓是否經過某定點?請證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com