【題目】已知函數(shù)

(1)判斷的奇偶性與單調性;

(2)解關于的不等式

【答案】(1)奇函數(shù),增函數(shù);(2).

【解析】

1)運用奇偶性的定義和單調性的定義,即可判斷;

2)運用(1)的結論,fx22x+2+f(﹣5)<0即為fx22x+2)<﹣f(﹣5)=f5),得x22x+25,解出即可.

1)∵f(﹣xfx),∴fx)是奇函數(shù).

fx1,在R上任取x1,x2,且x1x2,

fx1)﹣fx2

x1x2,∴,,

即有fx1)<fx2),則fx)在R上是增函數(shù).

2)由(1)得fx)是奇函數(shù),

fx)在R上是增函數(shù).

fx22x+2+f(﹣5)<0即為fx22x+2)<﹣f(﹣5)=f5),

x22x+25,即有x22x30

解得﹣1x3,則不等式解集為(﹣1,3).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),定義域均為

(1)若當時,的最小值與的最小值的和為,求實數(shù)的值;

(2)設函數(shù),定義域為

①若,求實數(shù)的值;

②設函數(shù),定義域為.若對于任意的,總能找到一個實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點,曲線為參數(shù)),其中,在以為極點,軸正半軸為極軸的極坐標系中,曲線

(Ⅰ)若,求公共點的直角坐標;

Ⅱ)若相交于不同的兩點,是線段的中點,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,則下列說法正確的是( )

A. 數(shù)列的前項和為 B. 數(shù)列的通項公式為

C. 數(shù)列為遞增數(shù)列 D. 數(shù)列是遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為自然對數(shù)的底數(shù)),.

(1)當時,求函數(shù)的極小值;

(2)當時,關于的方程有且只有一個實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象,向右平移個單位長度,再把縱坐標伸長到原來的2倍,得到函數(shù),則下列說法正確的是( )

A. 函數(shù)的最小正周期為 B. 函數(shù)在區(qū)間上單調遞增

C. 函數(shù)在區(qū)間上的最小值為 D. 是函數(shù)的一條對稱軸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的有( )

(1)很小的實數(shù)可以構成集合;

(2)集合與集合是同一個集合;

(3) 這些數(shù)組成的集合有5個元素;

(4)任何集合至少有兩個子集.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某項體能測試中,規(guī)定每名運動員必需參加且最多兩次,一旦第一次測試通過則不再參加第二次測試,否則將參加第二次測試.已知甲每次通過的概率為,乙每次通過的概率為,且甲乙每次是否通過相互獨立.

(Ⅰ)求甲乙至少有一人通過體能測試的概率;

(Ⅱ)記為甲乙兩人參加體能測試的次數(shù)和,求的分布列和期望.

查看答案和解析>>

同步練習冊答案