精英家教網 > 高中數學 > 題目詳情
已知過拋物線的焦點且斜率為的直線與拋物線交于兩點,且,則                   .
3

試題分析:由題意知,直線的方程為y=(x-),與拋物線C:聯立
得3x2-5px+=0,∴交點的橫坐標為x=或x=,
∵|FA|>|FB|,根據拋物線的定義得|FA|=2p,|FB|=,∴=3.
點評:中檔題,涉及直線與拋物線的位置關系,一般通過聯立方程組,尋求解題所需條件。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設拋物線的焦點為,經過點的動直線交拋物線于點,.
(1)求拋物線的方程;
(2)若(為坐標原點),且點在拋物線上,求直線傾斜角;
(3)若點是拋物線的準線上的一點,直線的斜率分別為.求證:
為定值時,也為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知拋物線的焦點為,過焦點且不平行于軸的動直線交拋物線于,兩點,拋物線在、兩點處的切線交于點.

(Ⅰ)求證:,三點的橫坐標成等差數列;
(Ⅱ)設直線交該拋物線于,兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若焦點在軸上的橢圓的離心率為,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得|=3|.
(1)求橢圓的標準方程;         
(2)求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,O為坐標原點,點P在橢圓上,線段與y軸的交點M滿足
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,當,且滿足時,求直線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

從雙曲線的左焦點引圓的切線,切點為,延長交雙曲線右支于點,若為線段的中點,為坐標原點,則的大小關系為(   )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于兩點,若△是銳角三角形,則該雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案