【題目】約定乒乓球比賽無平局且實行局勝制,甲、乙二人進(jìn)行乒乓球比賽,甲每局取勝的概率為.
(1)試求甲贏得比賽的概率;
(2)當(dāng)時,勝者獲得獎金元,在第一局比賽甲獲勝后,因特殊原因要終止比賽.試問應(yīng)當(dāng)如何分配獎金最恰當(dāng)?
【答案】(1);(2)甲獲得元,乙獲得元.
【解析】
(1)甲贏得比賽包括三種情況:前局甲全勝;前三局甲勝局輸局,第局勝;前局甲勝局輸局,第局勝.這三個事件互斥,然后利用獨立重復(fù)試驗的概率和互斥事件的概率加法公式可得出計算所求事件的概率;
(2)設(shè)甲獲得獎金為隨機變量,可得出隨機變量的可能取值為、,在第一局比賽甲獲勝后,計算出甲獲勝的概率,并列出隨機變量的分布列,并計算出隨機變量的數(shù)學(xué)期望的值,即可得出甲分得獎金數(shù)為元,乙分得獎金元.
(1)甲贏得比賽包括三種情況:前局甲全勝;前三局甲勝局輸局,第局勝;前局甲勝局輸局,第局勝.
記甲贏得比賽為事件,
則;
(2)如果比賽正常進(jìn)行,則甲贏得比賽有三種情況:第、局全勝;第、局勝局輸局,第局勝;第、、局勝場輸局,第局勝,此時甲贏得比賽的概率為
.
則甲獲得獎金的分布列為
0 | ||
則甲獲得獎金的期望為元,
最恰當(dāng)?shù)莫劷鸱峙錇椋杭撰@得元,乙獲得元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請寫出式子在寫計算結(jié)果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個盒子不空,共有多少種不同的方法?
(3)恰有一個盒子不放球,共有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面為的菱形, .
(1)證明:平面平面.
(2)若,直線與平面所成的角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且),定義域均為.
(1)若當(dāng)時,的最小值與的最小值的和為,求實數(shù)的值;
(2)設(shè)函數(shù),定義域為.
①若,求實數(shù)的值;
②設(shè)函數(shù),定義域為.若對于任意的,總能找到一個實數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象,向右平移個單位長度,再把縱坐標(biāo)伸長到原來的2倍,得到函數(shù),則下列說法正確的是( )
A. 函數(shù)的最小正周期為 B. 函數(shù)在區(qū)間上單調(diào)遞增
C. 函數(shù)在區(qū)間上的最小值為 D. 是函數(shù)的一條對稱軸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com