【題目】已知與為互不相等的20個(gè)實(shí)數(shù).若方程有有限多個(gè)解,則此方程最多有______個(gè)解.
【答案】9
【解析】
令
于是,由題意知.
設(shè)為集合中的所有元素按遞增順序的排列,且在
這21個(gè)區(qū)間的每一個(gè)中,函數(shù)均為線性的.
注意到,在區(qū)間中,,而在區(qū)間中,.
因?yàn)榉匠谈膫(gè)數(shù)有限,所以,.
沿著數(shù)軸自左向右移動(dòng).開始時(shí),中的x的系數(shù)為0.每當(dāng)越過(guò)一個(gè)時(shí),中均有一個(gè)絕對(duì)值的去掉方式發(fā)生變化,使得x的系數(shù)變化(增大2或減小2).這表明,x的系數(shù)恒為偶數(shù),并且不會(huì)在變?yōu)?以前改變符號(hào).由此,知該系數(shù)在任何兩個(gè)相鄰的區(qū)間中均要么同為非負(fù),要么同為非正.從而,在這樣的區(qū)間并集上要么同為非升,要么同為非降.如此一來(lái),若只有有限個(gè)根,則其在區(qū)間中均分別有不多于1個(gè)根.此外,由于與的符號(hào)不同,而在每個(gè)根處均發(fā)生變號(hào),于是,有奇數(shù)個(gè)根.從而,最多有九個(gè)根.
另一方面,不難驗(yàn)證,若
,,,,,,,,,
,,,,,,,,,,
則方程恰有九個(gè)根.
故答案為:9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將參加夏令營(yíng)的400名學(xué)生編號(hào)為:001,002,…,400,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為40的樣本,且隨機(jī)抽得的號(hào)碼為003,這400名學(xué)生分住在三個(gè)營(yíng)區(qū),從001到180在第一營(yíng)區(qū),從181到295在第二營(yíng)區(qū),從296到400在第三營(yíng)區(qū),三個(gè)營(yíng)區(qū)被抽中的人數(shù)分別為( )
A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn):是否存在這樣的正整數(shù)數(shù)列,滿足,且對(duì)每個(gè),均有或;而其各項(xiàng)的值恰構(gòu)成的一個(gè)排列?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度,為答對(duì)該題的人數(shù),為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
題號(hào) 學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù):
題號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)答對(duì)人數(shù) | |||||
實(shí)測(cè)難度 |
(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度,為第題的預(yù)估難度().規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了展示中華漢字的無(wú)窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展“中國(guó)漢字聽寫大會(huì)”的活動(dòng),為響應(yīng)學(xué)校號(hào)召,某班組建了興趣班,根據(jù)甲、乙兩人近期6次成績(jī)畫出的莖葉圖如圖所示,甲的成績(jī)中有一個(gè)數(shù)的個(gè)位數(shù)字模糊,在莖葉圖中用a表示.已知甲、乙兩人成績(jī)的平均數(shù)相同.
(1)根據(jù)題目信息,求a的值;
(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從穩(wěn)定性的角度,你認(rèn)為派誰(shuí)參加比賽較合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司將進(jìn)的一批單價(jià)為7元的商品,若按單價(jià)為10元銷售,每天可以賣出100個(gè),若每個(gè)商品的銷售價(jià)上漲1元,則每天的銷售量就減少10個(gè).
(1)設(shè)每個(gè)商品的銷售價(jià)上漲元,每天的利潤(rùn)為元,試寫出函數(shù)關(guān)系式.
(2)當(dāng)每個(gè)商品的銷售價(jià)定為多少時(shí),每天的利潤(rùn)達(dá)到最大?并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com