【題目】 “中國人均讀書4.3本(包括網(wǎng)絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家!边@個論斷被各種媒體反復引用。出現(xiàn)這樣的統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國傳統(tǒng)文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備購進一定量的書籍豐富小區(qū)圖書站,由于年齡段不同需看不同類型的書籍,為了合理配備資源,對小區(qū)內(nèi)看書人員進行了年齡的調(diào)查,隨機抽取了一天中名讀書者進行調(diào)查,將他們的年齡分成6段:,,,,后得到如圖所示的頻率分布直方圖.問:

(Ⅰ)求40名讀書者中年齡分布在的人數(shù);

(Ⅱ)求40名讀書者年齡的眾數(shù)和中位數(shù)的估計值;(用各組區(qū)間中點值作代表)

(Ⅲ)若從年齡在的讀書者中任取2名,求這兩名讀書者中年齡在恰有1人的概率.

答案見解析

【解析】(1)由頻率分布直方圖知年齡分布在頻率為,所以40名讀書者中年齡分布在的人數(shù)為(名).……………………2分

(2)眾數(shù)的估計值為最高的矩形的中點,即眾數(shù)的估計值等于……………………4分

設圖中將所有矩形面積和均分的年齡為,則,解得,即中位數(shù)的估計值為55.……………………6分

(3)由圖可知,年齡在讀書者人,在讀書者人.設年齡在的2名讀書者為,年齡在的4名讀書者為,則所有基本事件有:,,,,,,,,,,,共15種,其中年齡在的讀書者恰有1人的事件有:,,,,,,共8種,所以,這兩名讀書者中年齡在恰有1人的概率為……………………12分

【命題意圖】本題主要考查頻率分布直方圖的識別與計算、樣本的數(shù)字特征、古典概型,以及考查識圖能力、審讀能力、獲取信息的能力、分類討論思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面 側面1,

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為,設是橢圓的兩個短軸端點,是橢圓的長軸左端點.

(Ⅰ)當時,設點,直線交橢圓,且直線的斜率分別為,求的值;

(Ⅱ)當時,若經(jīng)過的直線與橢圓交于兩點,O為坐標原點,求的面積之差的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是正項數(shù)列的前項和,滿足,.

)求數(shù)列通項公式;

)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C對應邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極點與直角坐標系原點重合,極軸與軸的正半軸重合,曲線極坐標方程為.

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)已知直線的參數(shù)方程為為參數(shù)),直線交曲線兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對稱軸間的距離為.

(1)當時,求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了解2017屆高三學生的性別和喜愛游泳是否有關,對100名高三學生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為

(Ⅰ)請將上述列聯(lián)表補充完整;

(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!.

(1)完成下面列聯(lián)表,并判斷是否有的把握認為“空間想象能力突出”與性別有關;

空間想象能力突出

空間想象能力正常

合計

男生

女生

合計

(2)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

下面公式及臨界值表僅供參考:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

同步練習冊答案