【題目】某工廠有兩個(gè)車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[55,65),[65,75),[75,85),[85,95]分組).

分組

頻數(shù)

[55,65)

2

[65,75)

4

[75,85)

10

[85,95]

4

合計(jì)

20

第一車間樣本頻數(shù)分布表

(Ⅰ)分別估計(jì)兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);

(Ⅱ)分別估計(jì)兩車間工人生產(chǎn)時(shí)間的平均值,并推測哪個(gè)車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)從第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中隨機(jī)抽取2人,求抽取的2人中,至少1人生產(chǎn)時(shí)間小于65min的概率.

【答案】(Ⅰ) 第一車間60人,第二車間300 人 (Ⅱ) 第二車間工人生產(chǎn)效率更高(Ⅲ)

【解析】

(I)根據(jù)頻率分布直方圖和頻率分布表計(jì)算第一、第二車間生產(chǎn)時(shí)間小于的人數(shù);

(II)分別計(jì)算第一、第二車間生產(chǎn)時(shí)間平均值,比較大小即可;

(III)由題意利用列舉法求出基本事件數(shù),計(jì)算所求的概率值.

解:(I)估計(jì)第一車間生產(chǎn)時(shí)間小于的人數(shù)為(人),

估計(jì)第二車間生產(chǎn)時(shí)間小于的人數(shù)為

(人);

(II)第一車間生產(chǎn)時(shí)間平均值約為

),

第二車間生產(chǎn)時(shí)間平均值約為

);

,∴第二車間工人生產(chǎn)效率更高;

(III)由題意得,第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于的工人有6人,

其中生產(chǎn)時(shí)間小于的有2人,分別用、代表生產(chǎn)時(shí)間小于的工人,

、、、代表生產(chǎn)時(shí)間大于或等于,且小于的工人;

抽取2人基本事件空間為

共15個(gè)基本事件;

設(shè)事件A=“2人中至少1人生產(chǎn)時(shí)間小于”,

則事件

共9個(gè)基本事件;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量.2007年至2018年,某企業(yè)連續(xù)12年累計(jì)研發(fā)投入達(dá)4100億元,我們將研發(fā)投入與經(jīng)營收入的比值記為研發(fā)投入占營收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.

根據(jù)折線圖和條形圖,下列結(jié)論錯(cuò)誤的是( 。

A. 2012﹣2013 年研發(fā)投入占營收比增量相比 2017﹣2018 年增量大

B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加

C. 2015﹣2016 年研發(fā)投入增值最大

D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營收比逐年增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中數(shù)列的前項(xiàng)和,

1)若數(shù)列是首項(xiàng)為.公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式;

2)若,求證:數(shù)列滿足,并寫出的通項(xiàng)公式;

3)在(2)的條件下,設(shè),求證中任意一項(xiàng)總可以表示成該數(shù)列其它兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校進(jìn)入高中數(shù)學(xué)競賽復(fù)賽的學(xué)生中,高一年級(jí)有6人,高二年級(jí)有12人, 高三年級(jí)有24人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取7人進(jìn)行采訪.

(1)求應(yīng)從各年級(jí)分別抽取的人數(shù);

(2)若從抽取的7人中再隨機(jī)抽取2人做進(jìn)一步了解(注高一學(xué)生記為,高二學(xué)生記為,高三學(xué)生記為

①列出所有可能的抽取結(jié)果;

②求抽取的2人均為高三年級(jí)學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個(gè)人所得稅(簡稱個(gè)稅)改革迎來了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)

(1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;

(2)如果該從業(yè)者在個(gè)稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.

附注:參考數(shù)據(jù):,,

,,,其中:取,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.

新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元)

繳稅

級(jí)數(shù)

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)

稅率

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除

稅率

1

不超過1500元的都分

3

不超過3000元的都分

3

2

超過1500元至4500元的部分

10

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元的部分

30

超過35000元至55000元的部分

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列推理不屬于合情推理的是( )

A. 由銅、鐵、鋁、金、銀等金屬能導(dǎo)電,得出一切金屬都能導(dǎo)電.

B. 半徑為的圓面積,則單位圓面積為.

C. 由平面三角形的性質(zhì)推測空間三棱錐的性質(zhì).

D. 猜想數(shù)列2,4,8,…的通項(xiàng)公式為. .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某省高三男生身高情況,現(xiàn)從某校高三年級(jí)男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于157.5cm187.5cm之間,將測量結(jié)果按如下方式分成6組:第一組,第二組,,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.

1)求該學(xué)校高三年級(jí)男生的平均身高;

2)利用分層抽樣的方式從這50名男生中抽出20人,求抽出的這20人中,身高在177.5cm以上(含177.5cm)的人數(shù);

3)從根據(jù)(2)選出的身高在177.5cm以上(含177.5cm)的男生中任意抽取2人,求此二人來自于不同組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案