【題目】已知函數(shù)y=x2的圖象在點(diǎn)(x0 , x02)處的切線為直線l,若直線l與函數(shù)y=lnx(x∈(0,1))的圖象相切,則滿足( )
A.x0∈( , )
B.x0∈(1, )
C.x0∈(0, )
D.x0∈( ,1)
【答案】A
【解析】解:函數(shù)y=x2的導(dǎo)數(shù)為y′=2x,
在點(diǎn)(x0,x02)處的切線的斜率為k=2x0,
切線方程為y﹣x02=2x0(x﹣x0),
設(shè)切線與y=lnx相切的切點(diǎn)為(m,lnm),0<m<1,
即有y=lnx的導(dǎo)數(shù)為y′= ,
可得2x0= ,切線方程為y﹣lnm= (x﹣m),
令x=0,可得y=lnm﹣1=﹣x02,
由0<m<1,可得x0> ,且x02>1,
解得x0>1,
由m= ,可得x02﹣ln2x0﹣1=0,
令f(x)=x2﹣ln2x﹣1,x>1,
f′(x)=2x﹣ >0,f(x)在x>1遞增,
且f( )=1﹣ln2 <0,f( )=2﹣ln2 >0,
則有x02﹣ln2x0﹣1=0的根x0∈( , ).
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(2+x)=f(x),且在[﹣3,﹣2]上是減函數(shù),若A、B是銳角三角形ABC的兩個內(nèi)角,則下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示.
(1)求函數(shù) 的解析式,并寫出 的最小正周期;
(2)令 ,若在 內(nèi),方程 有且僅有兩解,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 的圓心在直線 上,半徑為 ,且圓 經(jīng)過點(diǎn)
(1)求圓 的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn) 且與圓 相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用符號“∈”或“”填空:
(1)若集合P由小于 的實(shí)數(shù)構(gòu)成,則2 P;
(2)若集合Q由可表示為n2+1( )的實(shí)數(shù)構(gòu)成,則5 Q.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,已知直線 的斜率為 .
(1)若直線 過點(diǎn) ,求直線 的方程;
(2)若直線 在 軸、 軸上的截距之和為 ,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 內(nèi)有一點(diǎn) ,過點(diǎn) 作直線 交圓 于 兩點(diǎn).
(1)當(dāng) 經(jīng)過圓心 時,求直線 的方程;
(2)當(dāng)直線 的傾斜角為 時,求弦 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為a的正方形ABCD沿對角線AC折起,使得BD=a.
(1)求證:平面 平面ABC;
(2)求三棱錐D-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點(diǎn)為 ,離心率e= ;
(2)實(shí)軸長為4的等軸雙曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com