【題目】(導(dǎo)學(xué)號:05856262)
如圖所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中點,AB⊥平面B1C1CB,∠BCC1=60°.
(Ⅰ)求證:AC⊥平面BDC1;
(Ⅱ)E是線段CC1上的動點,判斷點E到平面AA1B1B的距離是否為定值,若是,求出此定值;否則,說明理由.
【答案】(1)見解析;(2)定值為
【解析】試題分析:(1)利用余弦定理易證C1B⊥BC,又平面ABC⊥平面BCC1B1所以C1B⊥平面ABC進而易得AC⊥平面BDC1(2)CC1∥平面A1B1BA,所以點E到平面A1B1BA的距離與E的位置無關(guān),為一定值.利用等積法構(gòu)建所求量的方程,解之即可.
試題解析:
(Ⅰ)在△BCC1中,BC=BC2+CC-2BC×CC1×cos∠BCC1=1+4-2×1×2×=3,
∵CC=BC2+BC,∴C1B⊥BC.∵AB⊥平面BCC1B1,∴平面ABC⊥平面BCC1B1,
∴C1B⊥平面ABC,則平面BC1D⊥平面ABC.
∵AB=BC,D是AC的中點,∴AC⊥BD,∴AC⊥平面BDC1.
(Ⅱ)∵CC1∥BB1,∴CC1∥平面A1B1BA,所以點E到平面A1B1BA的距離與E的位置無關(guān),為一定值.
∵A1B1∥AB,∴A1B1⊥平面B1C1CB.
設(shè)點E到平面AA1BB1的距離為h,則VE-A1B1B=VA1-B1BE.
∵S△A1B1B=×A1B1×BB1=×1×2=1,
S△BB1E=SBCC1B1=S△BC1C=BC1×BC=,
∴S△A1B1B×h=S△BB1E×A1B1,即h=,也即點E到平面AA1B1B的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項都為正數(shù)的數(shù)列{an}滿足a1=1, =2an+1(an+1)-an.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=,求數(shù)列{an·bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·黃岡質(zhì)檢)如圖,在棱長均為2的正四棱錐P-ABCD中,點E為PC的中點,則下列命題正確的是( )
A. BE∥平面PAD,且BE到平面PAD的距離為
B. BE∥平面PAD,且BE到平面PAD的距離為
C. BE與平面PAD不平行,且BE與平面PAD所成的角大于30°
D. BE與平面PAD不平行,且BE與平面PAD所成的角小于30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(1,2)上是單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·河西五市二聯(lián))下列說法正確的是( )
A. 命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B. 命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C. “x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)min在x∈[1,2]上恒成立”
D. 命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是遞增的等比數(shù)列,滿足,且是、的等差中項,數(shù)列滿足,其前項和為,且.
(1)求數(shù)列,的通項公式;
(2)數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856307)(12分)
某老師為了分析學(xué)生的學(xué)習(xí)情況,隨機抽取了班上20名學(xué)生某次期末考試的成績(滿分為150分)進行分析,統(tǒng)計如下:
男生:133 131 130 126 123 120 116 109 107 105
女生:136 127 125 123 119 118 117 114 113 108
(Ⅰ)計算男、女生成績的平均值并分析比較男、女生成績的分散程度;
(Ⅱ)現(xiàn)從分數(shù)在120分以下的女同學(xué)中隨機抽取2位,求這兩位同學(xué)分數(shù)之差的絕對值小于10的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com